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in sheep immunized with Brucella suis S2 
vaccine is associated with M1 macrophage 
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Abstract 

Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden 
on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention 
of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine 
after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. 
suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella 
antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), 
superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of 
the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 per-
sisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas 
serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were per-
formed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation 
pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine 
LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine 
may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.
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Introduction
Brucellosis is a zoonotic disease with an annual global 
incidence rate of approximately half a million human 
cases [1]. In China, Brucella melitensis is the primary 
etiological agent of human brucellosis and is transmit-
ted to humans via exposure to infected sheep and goats 
or consumption of contaminated meat products. There-
fore, eradicating infections in herds is crucial for pre-
venting human contagion [2]. Abortion and infertility 
are the predominant clinical signs in small ruminants. 
Preventive measures, including culling of infected ani-
mals and vaccination of healthy animals, have resulted in 
the effective control and eradication of brucellosis. Cur-
rently, the reported vaccines against Brucella in sheep 
and goats include live-attenuated vaccines [3], genetically 
engineered attenuated vaccines [4, 5], vector-delivered 
Brucella vaccines [6–8], subunit vaccines [9] and others 
[10]. Despite several promising results, the efficacy and 
performance of these vaccines have not yet been system-
atically studied. The immunogenicity and principal char-
acteristics of brucellosis need to be evaluated before its 
use in the herd.

The current live-attenuated vaccines have various 
drawbacks, including interference with diagnostic tests, 
induction of abortions in pregnant sheep, persistent 
infection, virulence in humans and risk of virulence 
reversion [11]. In China,  the B. suis strain S2 vaccine is 
designed to prevent brucellosis in sheep and goats via the 
oral route in drinking water, which does not lead to abor-
tion in pregnant females [12]. Brucella suis S2 is a live 
attenuated vaccine that was first  isolated from the fetus 
of aborted swine in 1952 and spontaneously attenuated 
[13]. The advantages of the B. suis S2 vaccine are its low 
virulence, broad applicability, and convenient admin-
istration [14]. Animal experiments have shown that it 
protects mice from a virulent challenge by B. melitensis 
M28, B. abortus 2308 and B. suis S1330, and the S2 vac-
cinated mice did not develop any clinical signs or tissue 
damage [15]. A systematic analysis of laboratory brucel-
losis infection and vaccine infection events from 2006 to 
2019 in China suggested that the S2 vaccine strain is vir-
ulent for humans because of the fatigue and sweat seen in 
infected individuals [16]. We believe that further investi-
gation of the S2 vaccine strain pathogenicity in humans 
is necessary. Presently, studies in sheep and goats have 
mainly focused on the mechanism of B. suis S2 immune 
escape at the cellular level, involving both  phagocytic 
and non-phagocytic cells. Recent studies on goat alveolar 
macrophages have demonstrated that B. suis S2 manipu-
lates host inflammatory responses by inhibiting TLR/
NF-κB and attenuating NLRP3 inflammasome activa-
tion [17]. In goat trophoblast cells, B. suis S2 induces 
apoptosis through endoplasmic reticulum stress, thereby 

hampering cell proliferation [18]. In caprine endometrial 
epithelial cells, B.suis S2 induces non-apoptotic ER stress 
via the PERK pathway [19]. To the best of our knowledge, 
no studies have assessed the immune defense mecha-
nisms of oral vaccination with B. suis S2 in sheep. Lack 
of in  vivo data has restricted understanding of the vac-
cine’s pregnancy-sparing advantages. Thus, it is crucial to 
investigate the immunogenicity of the B. suis S2 vaccine 
and mechanisms of sheep immune defense in vivo.

Several studies have reported that the immune defense 
mechanisms induced by B. suis S2 vaccine against Bru-
cella include the innate immune signaling pathway, 
cell adhesion pathway, and adaptive immune signal-
ing pathway. In RAW264.7 cells stimulated with B. 
suis S2, the most upregulated genes were related to the 
innate immune signaling pathway after 24  h of infec-
tion, including cytokines (IL-1, IL-6, IL-23, and Cfs3) and 
chemokines (Ccl2, Ccl3, Ccl4, Ccl5, and Ccl10) [20]. In 
cynomolgus monkeys immunized with the S2 vaccine, 
663 differentially expressed genes (DEG) were involved 
in various biological processes, including the chemokine 
signaling pathway, defense response, immune system 
processing, and type-I interferon signaling pathway [21]. 
In sheep, four significant pathways and nine candidate 
genes (CTNNA3, PARD3, PTPRM, NLGN1, CNTNAP2, 
NCAM1, PRKG1, ADCY2 and YAP1) related to brucello-
sis susceptibility were identified by whole-genome rese-
quencing [22]. Our previous study identified three novel 
miRNA (novel_229, novel_609, and novel_973) in the 
lymph nodes of sheep immunized with B. suis S2, which 
participated in innate immunity, adaptive immunity, 
defense responses to bacteria, and the Notch signaling 
pathways [23].

Macrophages constitute the first line of defense in the 
innate immune response against invading Brucella [24]. 
It has long been recognized that Brucella interaction 
with macrophages is a key aspect of immune escape. 
Macrophages can polarize into two distinct subsets: M1 
and M2. M1 macrophages, also called classically acti-
vated macrophages, are polarized by lipopolysaccharide 
(LPS) and Th1 cytokines such as interferon (IFN)-γ [25]. 
Activated M1 macrophages produce pro-inflammatory 
cytokines that trigger an inflammatory response, phago-
cytosis, and cytotoxicity. Our in  vitro study on mouse 
macrophages (RAW264.7 cells) demonstrated that 
TNF-α secretion, iNOS expression, and NO produc-
tion are stimulated by B. melitensis M5-90 [26]. Previous 
studies have indicated that genes involved in NF-kappa 
B signaling pathway were found to be significantly 
increased in B. suis S2 infected RAW264.7 cells at 48  h 
post infection [27]. B. suis S2 and its derivatives induce 
marked expression of IL-1β, IL-6, and TNF-α mRNA in 
RAW264.7 cells [28].
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In this study, we examined the immunogenicity and 
protective capacity of the B. suis S2 vaccine in sheep to 
understand the immune mechanisms underlying bru-
cellosis resistance. Our results suggest that the B. suis 
S2 vaccine is safe for sheep, and immunization with B. 
suis S2 results in an altered expression of various genes 
related to antigen processing and the presentation path-
way of the host, with M1 macrophage expression identi-
fied as the dominant surrogate of protection. The role of 
M1 macrophages was first demonstrated in vivo in sheep 
immunized with the B. suis S2 vaccine.

Materials and methods
Animals
Small-tail Han female sheep, aged 10 months, were pur-
chased and transported to the Biosafety Level 3 (BSL-3) 
laboratory of Jinyu Baoling Bio-pharmaceutical Co., Ltd 
(Inner Mongolia, China) for experiment. Sheep were 
serologically tested using the Pourquier® Rose Bengal 
Brucellosis Antigen (IDEXX, P00215, ME, USA) and 
AsurDx™ Brucella Multispecies Antibodies cELISA 
Test Kit (BIOSTONE, 10043-05, TX, USA), which 
were designed for the detection of antibodies specific 
to B. abortus, B. melitensis and B. suis in bovine, ovine, 
caprine or swine. All sheep were housed separately in 
the Biosafety Level 3 (BSL-3) laboratory with daily sup-
plemental feeding and water ad  libitum. Animals were 
randomly divided into three groups: the body tempera-
ture monitoring group (T group, n = 6), the control group 
(C group, n = 3) and the vaccinated group (inoculated 
with B. suis S2, n = 23). At the indicated time points post 
infection, sheep in the vaccinated group were slaughtered 
humanely and sterilized by autoclaving. The tissues were 
collected for further experiments.

Oral immunization with B. suis S2 vaccine
The lyophilized B. suis S2 vaccine  was purchased from 
Jinyu Baoling Bio-pharmaceutical Co., Ltd (Inner Mon-
golia, China). To examine its accuracy in counting live 
bacteria, the number of colony-forming units (CFU) were 
confirmed retrospectively by counts of distinct colonies 
of the tryptic soy agar (BD Biosciences, NJ, USA) at 37 °C 
for 3–5 days. In the control group, three sheep were inoc-
ulated with 1  mL sterilized phosphate-buffered saline 
(PBS, pH 7.2). The remaining sheep in the T group and 
the vaccinated group were immunized with the lyophi-
lized B. suis S2 vaccine (with an amount of 2 × 1010 CFU 
in 1 mL sterilized PBS) via oral administration. The con-
trol group and vaccinated group were monitored at 0, 7, 
14, 21, and 30 days post-immunization (dpi) individually.

Body temperature monitoring and the rose bengal test 
assay
The body temperature of six sheep in the T group were 
measured continuously and recorded each morning 
from 0 to 30 dpi. One-way ANOVA followed by Dunnett 
multiple comparisons test was performed using Graph-
Pad Prism Software (v8.0.0, San Diego, California, USA). 
Ovine serum samples in the vaccinated group were col-
lected prior to the first immunization and at 7, 14, 21, and 
30 dpi. Serum samples were tested using the Pourquier® 
Rose Bengal Brucellosis Antigen (IDEXX, P00215, ME, 
USA). In the rose bengal test (RBT) assay, 25 µL of each 
serum was dispensed on the plates. The same volume of 
Rose Bengal Brucellosis Antigen was added beside each 
sample. The serum and Rose Bengal Brucellosis Antigen 
were mixed to produce a circle 2 cm in diameter. Any vis-
ible agglutination was interpreted as a positive test result.

Bacterial counting in host peripheral immune organs
To evaluate bacterial counting in host peripheral immune 
organs, seven tissues of each sheep in the vaccinated 
group were collected at 7, 14, 21, and 30 dpi. At each time 
point, three sheep were selected. The collected tissues 
included right mandibular LN, left mandibular LN, right 
superficial cervical LN, left superficial cervical LN, right 
superficial inguinal LN, left superficial inguinal LN and 
spleen. The tissues were weighed, homogenized and seri-
ally diluted in sterile PBS. Dilutions were plated on the 
superior Farrell’s medium (Oxoid, SR0083A, Basingstoke, 
UK) and incubated for 5 days at 37 °C. Plates were moni-
tored daily for growth, and Brucella was identified based 
on morphological characteristics and PCR. The live bac-
terial were enumerated as mean CFU/g ± SD.

Quantification of IL‑12p70 and IFN‑γ in serum
Three sheep in the vaccinated group were selected for 
serum cytokine detection. The serum concentrations 
of the pro-infammatory cytokines IL-12p70 and IFN-γ 
were examined via enzyme-linked immunosorbent assay 
(ELISA) on 96-well microplates. IL-12p70 was tested 
using RayBio® Ovine IL-12p70 ELISA Kit (RayBiotech, 
ELO-IL12P70, GA, USA). The quantification of IFN-γ 
was tested using RayBio® Ovine IFN-gamma ELISA Kit 
(RayBiotech, ELO-IFNg, GA, USA). In each well, 50  µL 
of serum was added to 50  µL of 1× diluent solution to 
obtain a 1:1 dilution following the instructions from the 
manufacturer. The OD value was read at 450  nm wave-
length in a Multiskan® FC reader (Thermo Scientific, Fin-
land). Each serum was processed in triplicate. The results 
were analyzed using Sigma plot software (Version 14.0), 
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with standard concentration on the x-axis (pg/mL) and 
absorbance on the y-axis.

RNA sequencing
The bilateral mandibular LN of sheep in the vaccinated 
group were selected for the transcriptome analysis at 7, 
14, 21, and 30 dpi. At each time point, three sheep were 
selected. Three micrograms of total RNA per mandibular 
LN were used to construct the RNA libraries. Sequenc-
ing libraries were generated using NEBNext® Multiplex 
Small RNA Library Prep Set for Illumina® (New Eng-
land Biolabs, Beverly, MA, USA), and index codes were 
added to attribute sequences to each sample. The library 
quality was assessed on the Agilent Bioanalyzer 2100 sys-
tem. The Illumina HiSeq™2500 was used for sequencing. 
The sequencing data were validated by a series of filtra-
tion steps. The valid data were mapped to the reference 
genome (GCA_000298735.1) using HISAT2 (Version 
2.0.4) and they were used to assemble transcripts with the 
reference annotation by StringTie (Version 1.3.4d). Gene 
expression levels were normalized by fragments per kilo-
base of exon model per million mapped reads (FPKM). 
The FPKM calculation equation used was FPKM = cDNA 
fragments/Mapped Reads (Million) × Transcript Length 
(kb).

Functional analyses of differentially expressed genes
The expression data for the 7 dpi, 14 dpi, 21 dpi, and 30 
dpi groups were normalized to that of the C group. Dif-
ferentially expressed genes (DEG)  of two groups were 
analyzed using the DESeq R package (1.8.3). P-values 
were adjusted using the Benjamini-Hochberg method. 
A default corrected P-value of 0.05 and the |log2 (Fold 
change) | ≥ 1 were set as the threshold for significantly 
differential expressions. The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database and Gene Ontol-
ogy (GO) databases were used for pathway annotation of 
the DEG.

Quantitative reverse transcription PCR validation
The quantitative reverse transcription PCR (RT-qPCR) 
was used to verify the reliability of the RNA sequenc-
ing. Total RNA was transcribed into cDNA  according 
to the manufacturer’s protocol from the M-MLV G III 
Frist-Strand Synthesis Kit (EB15012, Yugong Biolabs, 
Lianyungang). The qPCR was performed using RealU-
niversal PreMix (FP201, TIANGEN, Beijing) on an ABI 
7500 Real-Time PCR System (Applied Biosystems, Foster 
City, CA, USA). The reference gene was GAPDH. Rela-
tive transcriptional levels were determined by the 2−∆∆Ct 
method [29].

Statistical analysis
The data were analyzed using the Mann-Whitney test, 
two-way or one-way analysis of variance (ANOVA), and 
Tukey multiple-comparison test as appropriate. Graph-
Pad Prism software (La Jolla, CA, USA) was used for the 
analyses.

Results
Body temperature changed from 2 to 8 dpi
To evaluate the possible side effects of B. suis S2 vac-
cine, the body temperatures of six sheep in the T group 
were monitored continuously, starting from 1 day before 
immunization until 30 dpi. The clinical manifestations 
of B. suis S2 vaccine varied significantly among indi-
vidual sheep. Some sheep exhibited classical undulant 
fever, while others remained asymptomatic. Statisti-
cal analysis indicated significantly higher temperatures 

Figure 1  The body temperature monitoring of six sheep in T group from 0 to 30 dpi. *P < 0.05, **P < 0.01 and ***P < 0.001.
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and temperature fluctuations in individuals at 6 dpi (P 
< 0.001). From 2 to 8 dpi, B. suis S2 caused severe fluc-
tuation in the body temperature of these sheep, ranging 
from 39.0 to 40.5  °C (Figure 1). At 8 dpi, all sheep body 
temperatures returned to the normal range. No other 
serious adverse reactions, such as chills and malaise, were 
observed in the vaccinated groups.

Brucella antibodies in the serum persist up to at least 30 
dpi
For B. suis serological antibody detection, ovine sera were 
collected and tested using the rose bengal test (RBT) 
at 7, 14, 21 and 30 dpi (Table  1). Brucella antibodies in 
the serum were detectable at 7 dpi. The Brucella sero-
prevalence measured  by RBT, reached 100% at 21 dpi. 
At 30th dpi, five out of six sheep in the vaccinated groups 
remained positive for RBT. At 120 days after vaccination, 
all vaccinated ewes tested negative in the RBT test.

Brucella suis S2 only exists in mandibular LN and were 
eradicated at 21 dpi
To determine bacterial virulence in vivo, the survival of 
B. suis S2 in the peripheral immune organs of sheep was 
examined by determining the number of CFU. No B. suis 
S2 was isolated from the other tissues at any time point, 
except for the mandibular LN. According to the bacterial 
isolation results, B. suis S2 was randomly distributed in 
the left and right mandibular LN of the sheep (Table 2). 
Bacteria migrated to and persisted in the mandibular LN 
for at least 2 weeks. The number of B.  suis S2 began to 
decline at two weeks and was completely eradicated after 
three weeks. In addition, all LN and spleens were unre-
markable, with no evidence of lesions in the vaccinated 
groups at necropsy. However, despite the unremarkable 
gross appearance of the LN, histological sections of the 
mandibular LN show that B. suis S2 induced infiltration 
of inflammatory cells, such as macrophages (Additional 
file 1).

Serum Th‑1 type cytokine rises early at 9 dpi
IL-12p70 is required to boost Th-1 responses and 
IFN-γ production. IFN-γ can be induced by IL-12p70 

independently during early infection and contributes 
to the innate immune response. The highest level of 
IL-12p70 was detected in the serum 9 days after immu-
nization. This was accompanied by significantly higher 
serum IFN-γ levels at 12 dpi. The general trend in 
serum IL-12p70 level was undulating. IFN-γ peaked by 
day 12 to 15 after the first immunization and increased 
steadily from 18 to 30 dpi. These results demonstrate 
that IFN-γ maintained a response to the B. suis S2 vac-
cine. IFN-γ was produced at later time points after IL-
12p70 stimulation (Figure 2).

The chemotactic activity of T‑lymphocytes is initiated at 7 
dpi
Compared with the C group, the upregulated DEG 
in the vaccinated groups at 7 dpi were mainly associ-
ated with the defense response to bacteria and cellular 
response to IFN-γ. LBP and ACOD1, which belong to 
the toll-like receptor signaling pathway, were induced. 
The downstream genes of the toll-like receptor sign-
aling pathway, CXCL9, CXCL10 and CXCL11, which 
encoded IFN-inducible chemokines, were strik-
ingly expressed (Figure  3A). These three genes are 
cell markers of pro-inflammatory M1 macrophages 
and prompt the chemotactic activity of Th1 cells [30]. 
CCL28, which encoded the mucosa-associated epithe-
lial chemokine CCL28, were also unregulated. Mean-
while, GBP1, GBP2, GBP4, GBP5, and GBP6, which 
were members of the IFN-γ-inducible GTPase super-
family, were significantly activated. In contrast, six 
marker genes of natural killer cells (NK cells), includ-
ing NKG2A, KIR3DX1, CD94, ENSOARG00000002418, 

Table 1  The RBT assay results after vaccination. 

Days post-
immunization 
(dpi)

RBP results Positive 
rate (%)

Number of 
positive animals

Number of 
negative animals

7 dpi 1 4 20

14 dpi 5 1 83

21 dpi 6 0 100

30 dpi 5 1 83

Table 2  The colony forming units (CFU) of B. suis S2 isolates 
in sheep mandibular LN (mean CFU/g ± SD). 

Sheep dpi Left Mandibular LN 
(CFU/g)

Right 
Mandibular 
LN (CFU/g)

No.1 7 0 0

No.2 70 ± 80 0

No.3 1667 ± 208 4039 ± 449

No.4 14 0 429 ± 189

No.5 978 ± 278 0

No.6 0 332 ± 110

No.7 21 0 0

No.8 0 0

No.9 0 0

No.10 30 0 0

No.11 0 0

No.12 0 0
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ENSOARG00000002450, and ENSOARG00000007834, 
were all downregulated. Four genes involved in these 
pathways were selected for the RT-qPCR analysis. 
Among these, ENSOARG00000008994, ATP6V0A1, 
and SLC11A1 were in accordance with the RNA-seq 
results (Figure 3B).

The differentiation of CD4+ T cells is activated at 14 dpi
Compared with the C group, the DEG in the 14 dpi vac-
cinated groups were prominently enriched in antigen 
processing and presentation and graft-versus-host dis-
ease pathways (Figure  4A). The M2 macrophage-spe-
cific gene, CD163, was downregulated from 14 to 30 
dpi. DRB3, which belonged to the MHC class II gene 
family, was significantly increased at 14 dpi. The major 

histocompatibility complex (MHC) is a cluster of genes, 
most of which are responsible for presenting antigens to 
the immune system and playing a central role in regulat-
ing immune responses. MHC class II genes encode glyco-
proteins that bind to and present extracellular pathogens 
to circulating helper T lymphocytes and initiate cell-
mediated immunity. Moreover, ENSOARG00000002102, 
ENSOARG00000002532, ENSOARG00000002875, and 
ENSOARG00000014493, which are known as MHC 
class I-like antigen recognition superfamily genes, were 
downregulated at 14 dpi. A total of three genes (SOS1, 
SRRT, and VPS13D) were tested by RT-qPCR analysis. 
This provided consistent results with the RNA-seq data 
(Figure 4B).

Figure 2  The serum IL-12p70 and IFN-γ monitoring of four sheep from 0 to 30 dpi. 
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The phagocytosis of macrophages enhanced at 21 dpi
The phagosome pathway was observed at the 
21st dpi (Figure  5A). DYA, DQB1, PIKFYVE, and 
ENSOARG00000001181 were up-regulated, whereas 
ENSOARG00000009357, DR1B, DPB1, MRC1, and 
ATP6V0A1 were down-regulated. Among these DEG, 
PIKFYVE plays an essential role in the maturation of early 
endosomes into late endosomes, phagosomes, and lys-
osomes. The DYA gene, which also belongs to the MHC 
class II gene family, is unique in both ovine and bovine 
species [31]. MRC1 encodes the mannose receptor of 
macrophages and DC, which promotes bacterial uptake 
into phagosomes [32]. Decreased MRC1 expression indi-
cates a shift towards a pro-inflammatory environment 
and a switch from tolerogenic to immunogenic immune 
cell phenotypes, which enhances lysosomal fusion to 
avoid the intracellular niche for B. suis S2. The repre-
sentative genes (ENSOARG00000002418, DPEP2, and 
ENSOARG00000020002) in the enrichment pathways 
were further verified by RT-qPCR, the results of which 
were consistent with the RNA-seq data (Figure 5B).

Antigen processing and presentation is maintained 
up to 30 dpi
Both the MHC class I and MHC class II protein com-
plexes were identified from 7 to 30 dpi, which revealed 
that B. suis S2 in the mandibular LN were eradicated 
through these pathways (Figure  6A). According to the 
KEGG pathway enrichment analysis of DEG, the antigen 
processing and presentation pathway was activated at 
30 dpi, including DPB1, DYA, DQB1, DQA1 and DQA2 
genes (Figure 6B). Moreover, this pathway was detected at 
7 dpi, suggesting that the adaptive cell-mediated immune 
response was initiated early. ENSOARG00000002875 and 
ENSOARG00000014493, which belonged to the MHC 
class I-like antigen recognition-like superfamily, were 
downregulated at 30 dpi.

Discussion
Brucella eludes innate immune recognition through 
modifications of its virulence factors, such as lipopoly-
saccharide (LPS) and flagellin, resulting in a mild pro-
inflammatory response that leads to bacterial persistence. 
B. suis S2 occurs as a smooth strain, expressing smooth 

Figure 3  Network of upregulated DEG and RT-qPCR results. A Network of DEG associated with the cellular response to IFN-γ and Th1 cells 
migration. B The results of RT-qPCR verification.
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Figure 4  KEGG pathway enrichment analysis of DEG and RT-qPCR results. A KEGG pathway enrichment analysis of DEG (Top 20, FDR < 0.05). B 
The results of RT-qPCR verification.

Figure 5  KEGG pathway enrichment analysis of DEG and RT-qPCR results. A KEGG pathway enrichment analysis of DEG (Top 20, FDR < 0.05). B 
The results of RT-qPCR verification.
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lipopolysaccharide as the major surface antigen [12], 
which is similar to B. melitensis. The predominant route 
of B. melitensis infection under natural exposure is the 
alimentary tract [33], which is also similar to the B. suis 
S2 vaccine. Thus, B.suis S2 is an ideal model for study-
ing host immune response after Brucella infection. In 
this study, we demonstrate for the first time the ovine 
immune response, via the gastrointestinal mucosa routes, 
to B. suis S2 administration and evaluated the safety 
and protective efficacy of the B. suis S2 vaccine in vivo. 
Analysis of sheep anal temperature demonstrates that 
immunization of B. suis S2 led to an abnormal change 
in the body temperature of sheep within one week after 
immunization.

To induce immunity, live vaccine strains need to reach, 
multiply, and persist in immune-reactive tissues for a 
sufficient time, particularly in the spleen and/or lymph 
nodes. The survival time of B.suis S2 depends on residual 
virulence, dose, and route of administration. Studies by 
Wang showed that the murine spleen enlargements are 
detected following   B. suis S2 infection (1 × 107  CFU) 
after 14  days and are fully restored 28  days post-infec-
tion. Compared to uninfected mouse spleens, the num-
ber of macrophages increases significantly in the red 

pulp of spleens of B.suis S2-infected mice after 1 week 
[34]. According to our results, B. suis S2 were isolated 
as early as 7 dpi from the mandibular LN of the  immu-
nized sheep. The oral mucosa was the initial site of vac-
cination, and B.suis S2 were isolated from the mandibular 
LN. However, the spleen of sheep were clean, which was 
inconsistent with the murine model. At 21 dpi, Brucella 
clearance from the mandibular LN was observed, indi-
cating that B. suis S2 persisted for a short time in the 
host. In addition, all vaccinated ewes were negative for 
the RBT test after four months. Therefore, a booster vac-
cination after the first administration may be necessary 
to induce long-time protection.

The present literature on B.suis S2 is largely based on 
the murine model, and in vivo data from sheep are lim-
ited. During B.suis S2 immunization in our ovine model, 
the host immune response resembled Th1 immunity 
with the secretion of IL-12p70 and IFN-γ. In the begin-
ning of B. abortus infection, it has been clearly dem-
onstrated that murine NK cells are the most important 
IFN-γ producers [35]. Human NK cells are activated by 
autologous infected macrophages and secrete TNF-α and 
IFN-γ, thereby controlling intramacrophagic develop-
ment of B. suis in humans [36]. In our study, six marker 

Figure 6  The heatmap and regulatory networks of target DEG in antigen processing and presentation. A Heatmap of DEG in antigen 
processing and presentation pathway. B The regulatory networks of DEG. Red plots represent the MHC class II protein complex.
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genes of NK cells were downregulated at 7 dpi, indicat-
ing that the activity of NK cells in sheep mandibular LN 
was probably suppressed by B.suis S2. Despite the inhi-
bition of NK cells observed at 7 dpi, downstream IFN-γ 
pathways were still activated by other immune cells. It is 
well known that the activation of pro-inflammatory M1 
macrophages can be induced by the cytokine IFN-γ and 
bacterial components such as lipopolysaccharide (LPS) 
[37]. On the one hand, IFN-γ initiates the GBP superfam-
ily promoting oxidative killing [38]. On the other hand, 
IFN-γ  stimulates macrophages producing IL-12, a criti-
cal cytokine that evokes an adaptive immune response 
of type 1 helper T cells (Th1) and supports the continu-
ous production of IFN-γ [39]. In our study, the highest 
level of IL-12p70 was detected in the serum 9 days after 
immunization. In addition, activated M1 macrophages 
produced high levels of pro-inflammatory cytokines 
such as CXCL9, CXCL10, and CXCL11, at 7 dpi, leading 
to the migration of T cells to inflamed tissue sites along 
chemokine gradients.

To mediate pathogen clearance, the Th0 cells are acti-
vated by IL-12p70 and are transformed into Th1 cells. 
Animal studies have demonstrated that adequate Th1 
immunity, with significant production of IFN-γ and 
IL-12, is the principal immune effector for the clearance 
of Brucella infection. According to the ELISA results, the 
IFN-γ levels in the serum peaked at 12–15 dpi, reflect-
ing the massive activation of Th1 cells. IFN-γ plays an 
essential role in bidirectional stimulation of T cells and 
macrophages. By producing large amounts of IFN-γ and 
IL-12, Th1 cells induce the activation and M1 polariza-
tion of macrophages and enhance macrophage function, 
cell cytotoxic and Th1 proliferation [40]. In the present 
study, M1 macrophages probably eliminated B. suis S2 
by enhancing phagocytosis and expressing DRB3. DRB3 
belongs to the MHC class II gene family and is responsi-
ble for presenting antigens to T cells. A number of stud-
ies have reported the association of BoLA-DRB3.2 alleles 
with susceptibility/resistance to some infectious diseases 
in cattle, such as bovine papillomavirus infection [41]. 
Th1-driven IFN-γ enhances phagocytosis of M1 mac-
rophages to kill intracellular microorganisms. PIKFYVE, 
which expressed at 21 dpi, participated in the generation 
of Stage I melanosomes and maintenance of ion homeo-
stasis in lysosomes [42]. Moreover, DYA, which com-
prised the MHC class II molecules of macrophages, was 
significantly upregulated from 21 to 30 dpi.

Under IFN-γ stimulation, the MHC class II molecules 
of M1 macrophages, DPB1, DQA1, and DQA2 genes, 
were expressed at 30 dpi. The antigen presentation abil-
ity of macrophages was enhanced. Prolonged inflam-
mation leads to tissue damage. The body also produces 
M2 macrophages with anti-inflammatory activities. 

Classical monocytes diminish CD163 levels on the 
membrane and preferentially acquire CD163− defined 
M1 characteristics upon in  vitro LPS stimulation [43]. 
CD163 is a high-affinity scavenger receptor that is 
typically associated with the M2 macrophage pheno-
type [44]. From lymph nodes in sheep immunized with 
B. suis S2 vaccine, we detected a low level of CD163 
expression sustained from 14 to 30 dpi. Whether it was 
regulated by LPS of B. suis S2 or host IFN-γ, needs to be 
further investigated. Moreover, CCL28, which belongs 
to the CC chemokine (β-chemokine) signaling family, 
is first observed in the lymph nodes of sheep immu-
nized with B. suis S2 throughout the process. CCL28 
plays dual roles in the regulation of mucosal immune 
responses and recruitment of T cells into nasal mucosal 
tissues [45]. In this study, high CCL28 expression levels 
provide a constitutive innate immune defense against 
various bacterial pathogens driving mucosal homing 
of T and B lymphocytes with the above chemokines. 
In mice, sublingual immunization can effectively pro-
tect against Helicobacter pylori infection by enhancing 
CXCL10 and CCL28, resulting in strong T and B cell 
infiltration into the stomach [46].

In conclusion, our study suggests that B. suis S2 vac-
cinated sheep may control infection via stimulation of 
M1 macrophages through the course of Th cells. Briefly, 
the polarization of M1 macrophages was induced by B. 
suis S2 LPS or IFN-γ as early as 7 dpi. With the acti-
vation of Th1 immunity, Th1-driven IFN-γ enhanced 
phagocytosis of M1 macrophages at 14 dpi. Thus, M1 
macrophages eventually eliminated the intracellular 
microorganisms at 21 dpi. Our study has gained insight 
into in  vivo observations regarding the critical role of 
M1 macrophages in the control of B. suis S2 infections. 
The mechanism by which B. suis S2 influences host 
infection is complex, and our study provides evidence 
for one possible mechanism. Further experiments are 
required to confirm these findings. We are currently 
exploring new approaches to investigate genetic mark-
ers with natural resistance to Brucella infection, which 
can be further used in marker-assisted selection for 
natural resistance to brucellosis in breeding programs, 
as a significant contribution to the prevention of the 
disease in small ruminant herds.
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