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Abstract 

Background:  Metabolic syndrome (MetS) is a prevalent multifactorial disorder that can increase the risk of devel‑
oping diabetes, cardiovascular diseases, and cancer. We aimed to compare different machine learning classification 
methods in predicting metabolic syndrome status as well as identifying influential genetic or environmental risk 
factors.

Methods:  This candidate gene study was conducted on 4756 eligible participants from the Tehran Cardio-metabolic 
Genetic study (TCGS). We compared predictive models using logistic regression (LR), Random Forest (RF), decision tree 
(DT), support vector machines (SVM), and discriminant analyses. Demographic and clinical features, as well as vari‑
ables regarding common GCKR gene polymorphisms, were included in the models. We used a 10-repeated tenfold 
cross-validation to evaluate model performance.

Results:  50.6% of participants had MetS. MetS was significantly associated with age, gender, schooling years, BMI, 
physical activity, rs780094, and rs780093 (P < 0.05) as indicated by LR. RF showed the best performance overall (AUC-
ROC = 0.804, AUC-PR = 0.776, and Accuracy = 0.743) and indicated BMI, physical activity, and age to be the most influ‑
ential model features. According to the DT, a person with BMI < 24 and physical activity < 8.8 possesses a 4% chance 
for MetS. In contrast, a person with BMI ≥ 25, physical activity < 2.7, and age ≥ 33, has 77% probability of suffering from 
MetS.

Conclusion:  Our findings indicated that, on average, machine learning models outperformed conventional statistical 
approaches for patient classification. These well-performing models may be used to develop future support systems 
that use a variety of data sources to identify persons at high risk of getting MetS.

Keywords:  Decision tree, Discriminant analysis, Logistic Regression, Metabolic syndrome, Random Forest, Support 
vector machines

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The metabolic syndrome (MetS) refers to the simultane-
ous occurrence of a set of interrelated factors (high blood 
sugar, high blood pressure, dysregulated blood lipids, and 

Open Access

Journal of 
Translational Medicine

*Correspondence:  daneshpour@sbmu.ac.ir
4 Cellular and Molecular Research Center, Research Institute for Endocrine 
Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1525-8672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03349-z&domain=pdf


Page 2 of 12Akbarzadeh et al. Journal of Translational Medicine          (2022) 20:164 

abdominal obesity) that increases the risk of cardiovascu-
lar diseases (CVD), type 2 diabetes (T2D) and different 
types of cancer [1]. The pathophysiological mechanisms 
behind the MetS are complex and involve genetic and 
environmental factors, such as lifestyle, diet, and physical 
inactivity [2].

The prevalence of the MetS is reported to be about 
31% worldwide. While this number varies between gen-
ders and ethnicities, MetS is generally more prevalent 
among men and women of nations with aging popula-
tions [3, 4]. In Iran, approximately 33.7% of adults suffer 
from this syndrome [5]. As the rising prevalence of MetS 
among the aging Iranian population can lead to higher 
CVD rates and other devastating diseases, this affliction 
demands further investigative efforts in all aspects [6–8].

Designing predictive models that can aid in diagnosing 
patients who are more likely to have MetS, can aid pre-
ventive interventions designed to battle this syndrome as 
well as future cardiovascular complications that it engen-
ders. While researchers have frequently been using clini-
cal or demographic variables in these efforts, developing 
models that incorporate genetic variables is complex. 
As MetS is a complicated multifactorial disease, taking 
advantage of the data on well-researched MetS-asso-
ciated genes has the potential to provide us with much 
more powerful predictive tools.

Glucokinase (GCK) enzyme is the primary glucose sen-
sor in the liver and pancreatic cells. It regulates carbohy-
drate metabolism by adjusting biochemical pathways in 
glycogen synthesis, gluconeogenesis, and insulin release 
by pancreatic β-cells. Glucokinase regulatory protein 
(GKRP) binds to glucokinase and controls its intracel-
lular location and activity. The glucokinase regulator 
(GCKR) gene resides on the short arm of chromosome 
2 (2p23.3-p23.2), contains 19 exons, and encodes GKRP 
(68  kDa, 625 amino acids) [9, 10]. Genome-wide asso-
ciation studies (GWAS) and multiple candidate gene 
studies have reported GCKR variants to be associated 
with several metabolic parameters, including triglyc-
eride (TG) levels [11–16], insulin resistance and fasting 
plasma glucose (FPG) levels [14, 15, 17] as well as meta-
bolic disorders like T2DM [12, 15, 17], dyslipidemia (high 
TG and low high-density lipoprotein (HDL) cholesterol 
levels) [11, 13]. Common functional variants, rs780094, 
rs780093, and rs1260326, are the most researched genetic 
variants of the GCKR gene. Minor T-alleles of rs780094 
and rs1260326 are linked to hypertriglyceridemia, lower 
insulin resistance, and plasma glucose levels. While these 
effects might seem like opposing factors in the develop-
ment of MetS, some observational studies have found 
MetS to be more prevalent in individuals with the minor 
allele of these SNPs [14, 16–18]. Like rs780094, rs780093 
is also a common intronic variant in the GCKR gene that 

has been associated with polygenic dyslipidemia and high 
TG levels [19].

In this work, variants in the GCKR gene, as well as clin-
ical and demographic measures, will be utilized to build 
predictive models for metabolic syndrome. Recently, 
researchers have used various machine learning algo-
rithms to predict MetS. Methods such as decision tree, 
Random Forest [20, 21], and support vector machines 
(SVM) [22], among others, have achieved high perfor-
mance in evaluations. Each algorithm has its strengths 
and weaknesses that might suit a particular data and 
question type. Here, we aimed to compare certain 
machine learning models (decision tree, Random For-
est, support vector machines) with traditional statistical 
models (logistic regression, linear and quadratic discri-
minant analysis) developed on data from the participants 
of the Tehran Cardio-metabolic Genetic Study. We used 
models to obtain the most critical variables in predict-
ing metabolic syndrome and finding the high-performing 
ones in classifying individuals regarding MetS.

Method
Overview and study population
Subjects for this work were selected from the Tehran 
Lipid and Glucose Study (TLGS). Research Institute for 
Endocrine Sciences (RIES) affiliated with Shahid Beheshti 
University of Medical Sciences, approved the study pro-
tocol and initiated TLGS in 1999. It is a dynamic cohort 
experiment that aims to study the risk and protective fac-
tors of non-communicable diseases in the Iranian popu-
lation. 15,005 people from district 13 of Tehran have 
been recruited and followed through 6 phases [23]. Teh-
ran cardio-metabolic genetic study (TCGS) is a prospec-
tive family-based cohort study within TLGS that aimed 
to create a comprehensive genome-wide database of the 
Tehranian population. Participants have been followed 
every three years, and at each phase, all the participants 
have signed written consent. Through the six phases of 
this study, genotype and phenotype data on 13,399 indi-
viduals have been gathered. Details on all aspects of this 
project, including the design and practical methods (phe-
notyping, genotyping, and quality controls) have been 
described elsewhere by Azizi F. et al. [24–26].

Of 15,005 participants who entered at the 6 phases of 
TLGS (1999–2017), 13,399 subjects were genotyped and 
were included in TCGS. From this population, for this 
candidate gene study, all people over 18 who were not 
diagnosed with MetS at the first phase were included. 
The following were excluded: people with missing geno-
typing information; participants younger than 19  years 
old; Participants who were prevalent cases of MetS at the 
first phase; participants whose baseline or follow-up data 
were not available; and individuals who did not consent 
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to participate. Ultimately 4754 eligible participants (2116 
men and 2558 women) were selected for this work. A 
detailed flowchart of patient recruitment can be viewed 
in Fig. 1.

Definition of terms
For the purposes of this work, metabolic syndrome 
(MetS) is defined with the joint interim statement (JIS) 
criteria [27], that is: the presence of at least 3 of the 5 
following metabolic risk factors: (1) Hypertension as 
DBP ≥ 85 and SBP ≥ 130  mmHg, or antihypertensive 
medication; (2) Fasting HDL < 40 mg/dL and < 50 mg/dL 
in males and females respectively, or under lipid-lowering 
medication; (3) Fasting serum TG ≥ 150 mg/dL or under 
lipid-lowering medication; (4) Fasting plasma glucose 
(FPG) ≥ 100  mg/dL, or taking diabetes medication; (5) 
and central obesity (waist circumference (WC) ≥ 90  cm 
for both genders, based on the Iranian National Com-
mittee for Obesity guidelines). Based on the JIS criteria, 
individuals with at least three metabolic risk factors were 
considered as unhealthy cases. Others with a maximum 
of two from the mentioned risk factors were deemed 

healthy controls. Smoking status was categorized as 
never, former smoker, current smoker, and second-hand 
smoker. For Marital status, four categories were defined: 
single, married, widowed, and divorced.

Genetic analysis
Genomic DNA samples were extracted from the buffy-
coat of venous blood samples using the standard pro-
teinase K/salting out method. For qualitative estimation 
of the extracted DNA, a Thermo Scientific NanoDrop 
1000 Spectrophotometer was used, and samples with 
low quality and concentration (DNA purification in the 
range of 1.7 < A260/A280 < 2) were excluded. DNA sam-
ples were genotyped with HumanOmniExpress-24-v1-0 
bead chips (containing 649,932 SNP loci with an average 
mean distance of 4 kb) by deCODE genetics, Inc. (Rey-
kjavik, Iceland) according to the manufacturer’s specifi-
cations (Illumina Inc., San Diego, CA, USA). The PLINK 
program (V 1.07) and the R statistical software (V 3.2) 
used quality control procedures. The genotyping data 
of GCKR polymorphisms (rs780094, rs1260326, and 
780,093) were used for association analysis.

Statistical analysis
To find the essential predictors associated with metabolic 
syndrome, we compared classification machine learn-
ing (ML) algorithms, including the Random Forest (RF), 
Decision tree (DT), and Support vector machines (SVM), 
with three traditional statistical models: Logistic regres-
sion (LR), Linear discriminant analysis (LDA), and Quad-
ratic discriminant analysis (QDA). The performance 
evaluation metrics are also reported by gender. All statis-
tical analytical methods were performed using previously 
developed "randomForest", "MASS", "PRROC", "rpart", 
"caret",”e1071″ R packages [28–34].

Logistic regression
Logistic regression (LR), a standard classification 
method, models the probability of one of the two classes 
of a dichotomous outcome. Here, the linear combination 
of predictors is linearly fitted to the response variable’s 
mean with a binomial distribution under the logit link 
function.

P is the probability that a person has MetS, α is the 
intercept. Xs denote the covariates (age, sex, schooling 
years, BMI, smoking status, marital status, physical activ-
ity, and SNP information of GCKR genotypes), and Bs 
represent regression coefficients.

log

(

p

1− p

)

= α+

k
∑

i=1

βixi

participants aged ≥3 years from TLGS
Participants were recruited through six phases 

Phase 1 (1999-2001): 15005 participants 
Phase 2 (2002-2005): 3532 participants 
Phase 3 (2006-2008): 975 participants 
Phase 4 (2009-2011): 290 participants 
Phase 5 (2012-2014): 253 participants 
Phase 6 (2015-2017): 245 participants

Genotyped individuals in Tehran Cardio 
metabolic Genetic Study (TCGS) 

(n=13399) 

Excluded (participants 
without genotyped 

data): 6877 participants

Excluded (aged<19 
years):

4144 participants 

9255 participants (aged ≥19 years):
(4042 male and 5213 female) 

Excluded (without 
follow-up data): 
2078 participants  
(Non-responders)

Excluded (participants 
with prevalent metabolic 

syndrome at the 1st phase): 
2423 participants 

4754 eligible participants
(2116 male and 2558 female) 

Fig. 1  Study design and participant selection flowchart; 4754 eligible 
participants with available genotype information, > 19 years old, 
without prevalent MetS at the 1st phase and complete follow-up 
data from Tehran Cardio-metabolic genetic study (TCGS) were 
included
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Discriminant analyses (Linear and Quadratic)
Discriminant analysis is one of the oldest classifiers first 
proposed by Fisher and is currently used in two major 
frameworks: Linear and Quadratic. These algorithms 
are based on the Bayes theorem and are different from 
LR in the classification task. These classifiers model the 
distribution of the independent variables (X) separately 
in each response class. They then use the Bayes theorem 
to estimate the probability of the X values’ response lev-
els. While linear discriminant analysis (LDA) computes 
the discriminant scores by finding the linear combina-
tion of independent variables that model and classify 
the response variable, the quadratic discriminant analy-
sis (QDA) classifies the response variable with a non-lin-
ear combination of the predictors [35]. "MASS" package 
in R software was used to implement discriminant analy-
ses [29].

Decision tree
A decision tree (DT) is a supervised machine learning 
method used for regression and classification purposes 
[28]. DT predicts the target variable’s value by learning 
simple rules represented by a decision tree. It includes 
three components: nodes, branches, and leaves. This 
algorithm classifies each sample by sorting them down 
the tree from the root to some leaf node. Each node in 
the tree specifies a test of a particular sample attribute, 
and each branch descending from that node corresponds 
to one of the possible values for this attribute. Each leaf 
represents the predicted value of the target variable 
given the values of the variables defined by the path from 
the root [36]. "rpart" package in R software was used to 
implement the decision tree algorithm [33].

Random forest
Random forest (RF) is an ensemble-based learning algo-
rithm Breiman [39] proposed first. It can be used for clas-
sification, regression, and unsupervised learning [28]. 
This algorithm is a set of non-pruned trees (classifica-
tion trees based on the decision tree algorithm), and each 
tree is obtained by a recursive partitioning algorithm 
[37]. The algorithm for constructing an RF model with 
T trees from a dataset with n observations and p vari-
ables is as follows: (i) By the bootstrap method, a random 
sample with replacement with n number of observations 
is selected. (ii) A tree is created using the recursive par-
titioning algorithm for each sample. In each node, sepa-
ration (partitioning) is performed based on a random 
sample of m number of predictive variable p. (iii) The 
recursive partitioning algorithm continues until the tree 
reaches its maximum size (i.e. terminal leaf node for each 
observation) without pruning the tree. (iv) the algorithm 
then iterates through the samples, and for each bootstrap 

sample, steps 1–3 are repeated. The final output will be 
the mode of classes for classification tasks and the aver-
age of predictions for regression analyses [38]. Common 
choices for T are 1000 trees and for m is √p or log(p) 
[39]. Interpreting the Random Forest model can be chal-
lenging, so we need to summarize the information gen-
erated using quantitative indicators such as the variable 
importance (VI). VI is an indicator used to rank the pre-
dictor variables based on their influence on the response 
variable. The most famous indices are the Gini and per-
mutation. The "randomForest" package in R software was 
used to implement this algorithm [28].

Support vector machines
A support vector machine is another common super-
vised learning algorithm proposed by Vapnik to deal with 
classification and regression analysis [40]. It is mainly 
used for binary classification problems and applies to lin-
ear and non-linear data classification tasks. SVM’s goal 
is to find the best classification function to discriminate 
between the two classes present in the data set. SVM 
creates a hyperplane or multiple hyperplanes in a high-
dimensional space. The best hyperplane optimally divides 
the data into different classes with the maximum separa-
tion and gap between the classes (highest margin). In its 
non-linear classification method, SVM utilizes various 
kernel functions (i.e., linear, polynomial, radial basis, and 
sigmoid) to estimate and maximize the hyperplane mar-
gins. "e1071" package in R software was used to imple-
ment the SVM algorithm [32].

Model assessment (validation and comparison 
of the models)
To evaluate the model performance more precisely and 
decrease the potential variance between the estimates, 
we utilized 10-repeated tenfold cross-validation [41]. 
This procedure divides the data into 10 subsets, and each 
subset is used to evaluate the model exclusively trained 
on the other nine remaining subsets. The estimates of 
performance obtained from 10 repeated cross-validation 
are then averaged to get the overall performance indices 
such as sensitivity (SE), specificity (SP), accuracy (ACC), 
the area under the receiver operating characteristics 
curve (AU-ROC) and kappa. It is important to note that 
each subset’s proportion of cases and controls was held 
the same. Each subset properly represented the main 
sample and the status of the underlying community.

For each evaluation task, a confusion matrix was 
drawn. Evaluation metrics were defined as follows: Sen-
sitivity indicates the proportion of patients with MetS 
that the algorithms correctly classify as MetS positives. 
Specificity indicates the proportion of healthy subjects 
that the algorithms correctly classifies as MetS negatives. 
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Accuracy is the proportion of subjects among all partici-
pating individuals who were correctly classified as posi-
tives or negatives.

The receiver operating characteristic (ROC) curve is 
another useful indicator of model performance [41]. The 
X-axis and Y-axis of the ROC curve are sensitivity and 
1-specificity, respectively [42]. The area under the ROC 
curve (AU-ROC) indicates the model’s discriminative 
ability, and its values range from 0.5 to 1. The precision-
recall curve can summarize the information prediction 
performance with a single value as with ROC curves. 
This summary statistic is referred to as the AUC-PR; area 
under the (precision-recall) curve.  By and large, the 
higher the AUC-PR score, the better a classifier performs 
on a particular task. Values closer to one indicate higher 
model performance. "PRROC" and "caret" R packages 
were used to obtain relevant performance metrics [30, 
31, 34].

Results
Study population characteristics
Of 4754 subjects in this study, 54.8% were female, and 
the participants’ mean age was 36.78 ± 13.21 years. Based 
on the JIS criteria, 2365 (50.6%) participants had MetS. 
Information on independent variables consisting of age, 
sex, schooling years, BMI, smoking status, marital status, 
physical activity, and SNP information of GCKR geno-
types are described in Table 1. Here, the univariate p-val-
ues, calculated to compare the MetS positive and MetS 
negative groups on each predictor, are also presented.

For both genders, baseline characteristics and common 
SNPs of GCKR genotypes for study participants and non-
responders of the TCGS population are shown in Table 2. 
Based on the results, there were no significant differences 
between responders and non-responders in males and 
females other than higher BMI and lower physical activ-
ity in male non-responders and different smoking and 
marital status distribution between female responders 
and non-responders.

We calculated adjusted OR value and its corresponding 
significance level for each predictor based on the logis-
tic regression model. The results showed that metabolic 
syndrome was significantly associated with age, gender, 
schooling years, BMI, physical activity, rs780094, and 
rs780093 (P < 0.05) (Table  3). Males were 2.373 times 
more at risk to have metabolic syndrome than females. 

Sensitivity =
TP

TP + FN
, Specificity =

TN

FP + TN

Accuracy =
TP + TN

TP + FP + TN + FN

The odds of developing metabolic syndrome decreases 
with increasing education years (OR = 0.978). On GCKR 
polymorphisms (rs780094, rs1260326, and 780,093), the 
results showed that MetS is associated with rs780094 and 
rs780093 and this relationship is caused by significantly 
more frequency of minor T alleles in patients with MetS.

Performance comparison between machine learning 
algorithms
Table  4 summarizes the classification performance 
of various machine learning and traditional statisti-
cal methods based on the average value of 10-repeated 
tenfold cross-validation overall and by gender. Over-
all, the Random Forest showed higher classification 
accuracy (mean = 0.743) and area under the ROC 
curve (mean = 0.804) and AUC-PR (mean = 0.776). 
The decision tree ranked second in overall accu-
racy (mean = 0.738) with relatively high specificity 
(mean = 0.804) and AUC-PR (mean = 0.730). By and 
large, machine learning algorithms provided better accu-
racy, AUC-ROC, and AUC-PR compared with traditional 
statistical models. Accuracy, kappa, and AUC-ROC and 
AUC-PR of the machine learning models were higher 
overall and in both genders. While linear discriminant 
analysis (LDA) showed a high sensitivity (mean = 0.915), 
its specificity was considerably lower (mean = 0.230). 
Similar to the overall results, LDA provided the highest 
sensitivity in males (mean = 0.754). But in females, the 
highest sensitivity was achieved through logistic regres-
sion (mean = 0.798).

The importance of variables in the Random Forest 
model was calculated using the mean decrease Gini and 
mean decrease accuracy and is shown in Fig.  2. BMI, 
physical activity, and age were the most influential vari-
ables in both indices.

BMI present in the tree root was the most significant 
decision tree method and acted as the main prognostic 
factor. A combination of BMI + Physical activity + age is 
an accurate predictor for MetS. According to the induced 
decision tree shown in Fig. 3, the probability that an indi-
vidual with BMI < 24 and physical activity < 8.8 has MetS 
is a mere 4%. In contrast, there is a 77% probability that a 
person with BMI ≥ 25, physical activity < 2.7, and age ≥ 33 
suffers from MetS.

Discussion
This study aimed to compare the performance of 
machine learning-powered classification models, namely, 
support vector machines (SVM), decision tree (DT), and 
Random Forest (RF) in predicting metabolic syndrome, 
to that of three traditional classifiers: logistic regression 
(LR), linear discriminant analysis (LDA), and quadratic 
discriminant analysis (QDA). Through developing such 
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models on the eligible participants of the Tehran Cardio-
metabolic genetic study (TCGS), we also obtained the 
most influential predictive features of MetS among clini-
cal and GCKR polymorphism variables.

We found age, gender, schooling years, BMI, physical 
activity, and genetic variants of rs780094 and rs780093 
significant risk factors for predicting metabolic syn-
drome. Despite their statistical significance, gender, 
schooling years, rs780094, and rs780093 did not influ-
ence the MetS prediction considerably. On the other 
hand, BMI, physical activity, and age were the most influ-
ential predictors of MetS, as indicated by the influence 
metrics of the Random Forest model. This result is in 
line with Fuentes et al., which denoted BMI as one of the 

anthropometric variables associated with metabolic syn-
drome and essential for early detection [43].

The single nucleotide polymorphisms that showed sig-
nificant relationships with metabolic syndrome in our 
predictive models agree with the findings of previous 
works that had examined the association between MetS 
and similar genetic markers [18, 44, 45].

Among classification machine learning methods that 
included SVM, DT and RF, RF had the best perfor-
mance in classifying subjects on their MetS outcomes 
as indicated by the highest accuracy (0.743) as well as 
area under the receiver operating characteristic curve 
(AU-ROC) (0.804) and AUC-PR (0.776). This result is 
similar to the findings in the study by Szabo et al. that 

Table 1  Comparing independent demographic and genetic predictors of MetS in the healthy and unhealthy groups

MetS Metabolic Syndrome, BMI Body Mass Index, SD Standard Deviation; significant difference were observed in SNP information of GCKR genotypes and 
independent variables between healthy and unhealthy participants
a Student’s-t test
b chi-square test

Variables Unhealthy (MetS) (%) Healthy (No MetS) (%) P value

Group size (%) 2365(50.6) 2309(49.4)

Age (mean ± SD) 40.53 ± 12.93 33.04 ± 12.47  < 0.001a

Schooling years (mean ± SD) 9.19 ± 4.34 10.41 ± 4.63  < 0.001a

BMI (mean ± SD) 27.08 ± 4.09 23.8 ± 3.95  < 0.001a

Physical activity (mean ± SD) 575.16 ± 923.29 452.48 ± 808.96  < 0.001a

Sex (%)

 Male 1249(52.81) 867 (37.55)  < 0.001b

 Female 1116 (47.19) 1442 (62.45)

Smoking status (%)

 Never 1213(51.29) 1323(55.94)  < 0.001b

 Former smoker 146(6.17) 73(3.09)

 Current smoker 336 (14.21) 259 (1095)

 Second hand smoker 670 (28.33) 654 (27.65)

Marital status (%)

 Divorced 24 (1.01) 19 (0.80)  < 0.001b

 Married 1967 (83.17) 1612 (68.16)

 Single 312(13.19) 652(27.57)

 Widowed 62(2.62) 26 (1.10)

rs1260326 (%)

 CC 662(27.99) 734 (31.04)  < 0.01b

 TC 1156(48.88) 1090 (46.09)

 TT 547(23.13) 485 (20.51)

rs780094 (%)

 CC 675 (28.54) 752 (31.80)  < 0.01b

 TC 1156 (48.88) 1079 (45.62)

 TT 534 (22.58) 478 (20.21)

rs780093 (%)

 CC 668(28.25) 735(31.08)  < 0.01b

 TC 1143(48.33) 1107(46.81)

 TT 554(23.42) 476(20.13)
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applied the Random Forest algorithm for a similar task 
and calculated the accuracy of this method to be 71.4% 
[46–48]. Worachartcheewan et  al. also implemented 
a Random Forest model to predict MetS in the Bang-
kok population and identify the most influential pre-
dictors. They found that the Random Forest algorithm 
predicted MetS status in adults aged 18 to78 with high 
accuracy (98.11%) [49].

The decision tree was the second-best performing 
model, and its calculated measure for accuracy, sensi-
tivity, specificity, AUC-ROC, and AUC-PR were 0.738, 
0.667, 0.804, 0.771, and 0.730, respectively. Other 
works have also implemented the decision tree to 
detect metabolic syndrome with a sensitivity of 91.6% 
and specificity of 95.7% [43]. Results obtained from the 

decision tree algorithm showed that a combination of 
BMI, physical activity, and age is an accurate predictor 
for predicting MetS. This agrees with a previous work 
by Huang et  al. conducted to explore the association 
between lifestyle variables and metabolic syndrome and 
found that individuals with BMI > 27  kg/m2 were pre-
disposed to metabolic syndrome [50]. In another study 
by Worachartcheewan et  al. that used a decision tree 
to diagnose metabolic syndrome, the results confirmed 
that BMI ≥ 25 is an important feature in diagnosing 
MetS [20]. In our work, the evaluation metrics for DT 
were almost similar to RF, and both outperformed the 
SVM. Karimi-Alavijeh et  al. also employed DT and 
SVM to predict metabolic syndrome. In that investiga-
tion, SVM outperformed DT on several performance 

Table 2  Baseline characteristics of study participants and non-responders by common SNPs of GCKR genotypes

BMI Body Mass Index; There were no significant differences between responders and non-responders in males and females other than higher BMI and lower physical 
activity in male non-responders and different smoking and marital status distribution between female responders and non-responders
a Student’s t-test
b chi-square test

Variables Male Female

Responders (%) Non-Responders (%) P value Responders (%) Non-Responders (%) P value

Group size (%) 2164 (72.28) 830 (27.72) 2590 (68.28) 1203 (31.72)

Age(mean ± SD) 39.35 ± 14.59 41.48 ± 15.31 0.06141 36.25 ± 11.51 37.06 ± 14.6 0.0649a

Schooling years (mean ± SD) 10.02 ± 4.65 9.91 ± 4.4 0.5821 9.58 ± 4.4 9.32 ± 4.36 0.145a

BMI (mean ± SD) 24.86 ± 3.87 25.12 ± 4.38 0.02461 26.31 ± 4.68 26.63 ± 4.92 0.0539a

Physical activity (mean ± SD) 607.79 ± 1049.11 524.49 ± 1034.92 0.05101 429.78 ± 696.21 384.48 ± 682.76 0.0607a

Smoking status (%)

 Never smoker 825 (38.12) 283 (34.10) 0.2212 1732 (66.87) 717 (59.60) 0.002b

 Former smoker 219 (10.12) 88 (10.60) 8 (0.31) 13 (1.08)

 Current smoker 547(25.28) 196 (23.61) 59 (2.28) 35 (2.91)

 Second hand 573(26.48) 171 (20.60) 791 (30.54) 371 (30.84)

Marital status (%)

 Divorced 12 (0.55) 1(0.05) 0.1042 33 (1.27) 18 (1.50)  < 0.001b

 Married 1628 (75.23) 649(29.99) 2011 (77.64) 954 (79.30)

 Single 520 (24.03) 176 (8.13) 462 (17.84) 155 (12.88)

 Widowed 4 (0.18) 3 (0.14) 84 (3.24) 76 (6.32)

rs1260326 (%)

 CC 662 (30.59) 265 (31.93) 0.2332 755 (29.15) 370 (30.76) 0.602b

 TC 1015 (46.90) 402 (48.43) 1265 (48.84) 574 (47.71)

 TT 487 (22.50) 163 (49.64) 570 (22.01) 259 (21.53)

rs780094 (%)

 CC 676 (31.24) 251 (30.24) 0.302 773 (28.30) 358 (29.76) 0.998b

 TC 1015 (46.90) 414 (49.88) 1256 (48.49) 584 (48.55)

 TT 473 (21.86) 165 (19.88) 561 (21.66) 261 (21.70)

rs780093 (%)

 CC 672 (31.05) 179 (21.57) 0.1762 754 (29.11) 280 (23.28) 0.087b

 TC 1010 (46.67) 315 (37.95) 1275 (49.23) 404 (33.58)

 TT 482 (22.27) 125 (15.06) 561 (21.66) 214 (17.79)
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Table 3  Applying logistic regression to assess the significance of relationship between Independent demographic and genetic 
variables and metabolic syndrome

BMI Body Mass Index; logistic regression is used to predict the metabolic syndrome status of the participants in TCGS. The metabolic syndrome was significantly 
associated with age, gender, schooling years, BMI, physical activity, rs780094, and rs780093 (P < 0.05)

Variables B Odds ratio (OR) P value

Age 0.025 1.025  < 0.001

Gender (female = 0) 0.864 2.373  < 0.001

Schooling years − 0.021 0.978 0.009

BMI 0.207 1.230  < 0.001

Physical activity 0.0001 1.000 0.005

Smoking status Current smoker(reference)

Never smoker 0.005 1.005 0.962

Former smoker 0.072 1.075 0.698

Second hand 0.646 1.066 0.593

Marital status Divorced (reference)

Married − 0.087 0.916 0.808

Single − 0.198 0.820 0.595

Widowed − 0.010 0.989 0.981

rs1260326 CC(reference)

TC 0.206 1.229 0.347

TT 0.472 1.603 0.133

rs780094 CC(reference)

TC 0.149 1.161 0.664

TT − 1.211 0.298 0.008

rs780093 CC(reference)

TC − 0.122 0.884 0.664

TT 1.066 2.903 0.002

Table 4  Performances metrics for LR, SVM, DT, RF, LDA, and QDA algorithms

LR Logistic Regression, SVM support vector machines, DT Decision Tree, RF Random Forest, LDA Linear discriminant analysis, QDA Quadratic discriminant analysis, AUC​ 
Area Under Curve. Machine learning methods outperforms the traditional statistical methods

Models Accuracy Sensitivity Specificity Kappa AUC-ROC AUC-PR

Total SVM 0.725 0.661 0.785 0.447 0.785 0.761

DT 0.738 0.667 0.804 0.473 0.771 0.730

RF 0.743 0.699 0.784 0.484 0.804 0.776

LR 0.705 0.677 0.732 0.409 0.770 0.748

LDA 0.562 0.915 0.230 0.141 0.658 0.666

QDA 0.546 0.492 0.598 0.089 0.563 0.555

Male SVM 0.712 0.475 0.870 0.366 0.733 0.766

DT 0.735 0.527 0.874 0.421 0.739 0.753

RF 0.729 0.559 0.842 0.415 0.754 0.782

LR 0.711 0.519 0.839 0.373 0.732 0.768

LDA 0.591 0.754 0.482 0.217 0.679 0.734

QDA 0.547 0.394 0.649 0.044 0.531 0.616

Female SVM 0.733 0.783 0.671 0.456 0.802 0.565

DT 0.748 0.753 0.742 0.492 0.785 0.706

RF 0.744 0.767 0.715 0.482 0.815 0.754

LR 0.738 0.798 0.663 0.465 0.803 0.741

LDA 0.608 0.752 0.427 0.184 0.664 0.617

QDA 0.635 0.749 0.491 0.245 0.670 0.572
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metrics (SVM (DT) model accuracy, sensitivity, and 
specificity were 0.774 (0.758), 0.74 (0.72), and 0.757 
(0.739) [51].

To construct predictive models for MetS, other works 
have similarly employed various data mining methods 

including artificial neural networks (ANN), beside deci-
sion tree, Random Forest, support vector machines, prin-
cipal component analysis (PCA) and association analysis 
(AA). Their results showed that with an accuracy in the 
north of 99%, DT outperformed ANN and SVM, which 
provided lower accuracy metrics [52]. Other investi-
gators have shown DT to be a robust machine learning 
method for constructing a predictive model of meta-
bolic syndrome with reported accuracies of 73.90% [53] 
and 71.80% [54]. Lin et al. attempted to identify MetS in 
patients undergoing treatment with second-generation 
antipsychotics. They reported that  logistic regression 
model had an accuracy as high as 83.6% and indicated 
BMI was an important predictor in identifying metabolic 
syndrome status [54]. This result contrasts with studies 
that found RF and SVM to be the most accurate classifi-
ers for metabolic syndrome [22, 28, 55]. The complicated 
and multifactorial nature of metabolic syndrome and 
the severity of its complications require investigators to 
put further emphasis on the model sensitivity. While the 
quadratic discriminant analysis provided very low sensi-
tivity, linear discriminant analysis (LDA) had the highest 
overall sensitivity. Similar to ours, other investigations 
have shown that LDA and RF are more sensitive classi-
fiers than SVM, classification tree, and ANN [22, 56–58].

Fig. 2  Assessing the importance of predictors with Gini and 
Accuracy importance indices based on the implementation of the 
random forest model; we confirmed that BMI, physical activity, and 
age were the most influential variables in MetS prediction

Fig. 3  Classification decision tree, with probabilities of success for metabolic syndrome shown in each node; A combination of BMI, Physical 
activity, and age is an accurate predictor for the MetS
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Compared with other recent studies conducted to 
develop predictive models for MetS, this work provides 
several advantages. It is important to emphasize that 
metabolic syndrome is a multifactorial disorder in which 
genetics, environmental factors, and lifestyle habits are 
all involved in disease pathogenesis. Unlike studies that 
exclusively use genetic variables, we developed our pre-
dictive models using clinically important and genetic 
information to provide more relevant results. In addi-
tion, past modeling efforts have less frequently developed 
both traditional and machine learning algorithms on big 
data for MetS prediction. The machine learning models 
developed through this effort have the advantage of pro-
viding good patient classification and indicating the most 
important risk factors. These models can be the basis 
of clinical tools that receive genetic and environmen-
tal information from patients as inputs and output their 
chances of having/developing MetS.

On the other hand, we should emphasize that research-
ers should be cautious when generalizing the results of 
this effort to other populations that were not represented 
in our study sample. Moreover, the effect of slight differ-
ences between responders and non-responders among 
participants on the study metrics remains unclear.

Conclusion
It is essential to focus the resources on individuals who 
are most likely to develop or be already afflicted with 
these disorders to improve the potential effects of pub-
lic health measures in reducing the burden of prevalent 
diseases such as metabolic syndrome. Traditional sta-
tistical models often fail to provide reliable predictive 
models when facing a multifactorial disorder with many 
potential independent genetic and environmental risk 
factors. However, as compared to conventional models, 
modern machine learning algorithms can enhance pre-
dicted accuracy in clinical concerns. Nonetheless, even 
when combined with genetic information, these mod-
els are insufficient for clinical application [59]. The first 
reason is that the sample size of such studies is insuf-
ficient to make a conclusive determination; the second 
reason is that whole-genome information is required 
in this regard; additionally, the ancestral discrepancy 
between populations necessarily requires that these 
models be considered separately for different ethnic 
groups [60, 61]. In this work, we compared predictive 
models for metabolic syndrome using the information 
on demographic and clinical and genetic data (func-
tional variants of GCKR gene) on patients from TCGS. 
Our results proved modern methods, particularly Ran-
dom Forest and decision tree, can provide high per-
forming MetS predicting models that can help reduce 

future cardiovascular, cancer, or other related compli-
cations when integrated within decision support tools 
or future investigations.

The study was the first step to predict the pheno-
types using the polygenic risk score (PRS) as a modern 
method for disease prediction. The vital thing in the 
TCGS is discovering the best prediction model(s) for 
different diseases, especially MetS, which is multifac-
torial in terms of the definition and the etiology. Con-
sequently, we decided to test the conventional models 
versus machine learning methods for known genes in 
our data to compare them on prediction ability.
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