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Single‑cell transcriptomic analysis reveals 
a novel cell state and switching genes 
during hepatic stellate cell activation in vitro
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Abstract 

Background:  The transformation of hepatic stellate cell (HSC) to myofibroblast is a key event during liver fibrogen-
esis. However, the differentiation trajectory of HSC-to-myofibroblast transition and the switching genes during this 
process remains not well understood.

Methods:  We applied single-cell sequencing data to reconstruct a single-lineage pseudotime trajectory of HSC 
transdifferentiation in vitro and analyzed the gene expression patterns along the trajectory. GeneSwitches was used 
to identify the order of critical gene expression and functional events during HSC activation.

Results:  A novel cell state during HSC activation was revealed and the HSCs belonging to this state may be an 
important origin of cancer-associated fibroblasts (CAFs). Combining single-cell transcriptomics with GeneSwitches 
analyses, we identified some distinct switching genes and the order at which these switches take place for the new 
state of HSC and the classic culture-activated HSC, respectively. Based on the top switching genes, we established a 
four-gene combination which exhibited highly diagnostic accuracy in predicting advanced liver fibrosis in patients 
with nonalcoholic fatty liver disease (NAFLD) or hepatitis B (HBV).

Conclusion:  Our study revealed a novel cell state during HSC activation which may be relevant to CAFs, and identi-
fied switching genes that may play key roles in HSC transdifferentiation and serve as predictive markers of advanced 
fibrosis in patients with chronic liver diseases.
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Introduction
Hepatic fibrosis is a common wound-healing response 
to diverse chronic liver diseases. The pathogenesis of 
hepatic fibrosis is mostly featured by excessive accumula-
tion of extracellular matrix (ECM) in the liver [1], which 
is mainly derived from activated hepatic stellate cell 
(HSC). Upon different kinds of hepatic injuries, quiescent 

HSCs are activated and transformed into proliferative, 
fibrogenic and contractile myofibroblasts, which are 
characterized by expressing high level of Acta2 (smooth 
muscle actin alpha 2). HSC activation is recognized as a 
pivotal event during liver fibrogenesis [2, 3].

Single-cell transcriptomic analysis is widely used in 
basic scientific and clinical researches, and has reshaped 
our understanding of many complex biological processes. 
Compared with traditional sequencing methods, single-
cell RNA sequencing (scRNA-seq) can offer unprece-
dented insight into HSC heterogeneity and identify genes 
highly related to HSC activation at single-cell resolution. 
Recently, HSC zonation has been proposed as a determi-
nant of the liver fibrogenesis response [4]. The subsets 

Open Access

Journal of 
Translational Medicine

*Correspondence:  wengzh@hust.edu.cn
†Hua Wang and Shaoping Zheng contributed equally to this manuscript
1 Department of Infectious Diseases, Union Hospital, Tongji Medical 
College, Huazhong University of Science and Technology, 1277 JieFang 
Avenue, Wuhan 430022, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1323-6173
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03263-4&domain=pdf


Page 2 of 13Wang et al. Journal of Translational Medicine           (2022) 20:53 

of HSC and myofibroblast during hepatic fibrosis have 
been identified by single-cell transcriptomic analysis [5]. 
However, the differentiation trajectory of HSC-to-myofi-
broblast transition and the switching genes during this 
process remains not well understood.

In the present study, we in silico reconstructed a single-
lineage pseudotime trajectory of HSC activation in vitro 
based on the scRNA-seq data. Intriguingly, we identified 
a novel cell state during HSC transdifferentiation, which 
may be relevant to cancer-associated fibroblasts (CAFs). 
In addition, we dissected key switching genes contribut-
ing to HSC activation, then, we established a four-gene 
combination based on the top switching genes and evalu-
ated its diagnostic accuracy in predicting advanced liver 
fibrosis in humans.

Materials and methods
scRNA‑seq data analysis
Published scRNA-seq data were retrieved from the Gene 
Expression Omnibus (GEO) dataset GSE132662 [5]. It 
includes single-cell transcriptomic data of the primary 
HSCs which were isolated from healthy mouse liver, cul-
tured in vitro and harvested at day 0, 1, 3, 7, and 9. The 
scRNA-seq downstream analyses were performed using 
the R package Seurat 3.0  [6]. Low quality cells (< 200 
genes/cell, > 6000 genes/cell, < 3 cells/gene and > 20% 
mitochondrion genes) were filtered out from the data-
set. Then, the gene expression in the remained cells was 
normalized using a linear regression model. Highly vari-
able genes were identified and selected for principal com-
ponent analysis (PCA) to identify significantly available 
dimensions [7].  Afterwards, the t-distributed stochastic 
neighbor embedding (t-SNE) algorithm was applied for 
performing dimensionality reduction and cluster analysis 
[8].

To dissect the activation process of quiescent HSC 
in  vitro at single-cell resolution, we used Monocle2 [9] 
to perform in silico pseudotime trajectory analysis of 
HSC transdifferentiation. Briefly, the “DDRTree” reduc-
tion method was used and single cells were ordered into 
a trajectory with branch points. The cells in different 
branches were considered to be in the different cell dif-
ferentiation state. Genes showed differential expression 
levels between branches were defined as state-specific 
genes.

GeneSwitches analysis
To discover the order of critical gene expression and 
functional events during HSC activation, we apply Gene-
Switches [10], a tool that can process scRNA-seq data 
together with pseudotime trajectories to identify the 
genes (named switching genes) that act as on/off switches 
between cell states and importantly the ordering at which 

these switches take place. GeneSwitches first binarizes 
the input gene into either an “on” or “off” gene-expression 
state to facilitate the identification of switching events. 
For each gene in each cell, the binarized gene expression 
is used as a dependent variable in logistic regression with 
the pseudotime value of each cell providing the inde-
pendent variable. Using this, GeneSwitches calculates the 
probability of gene-expression throughout pseudotime 
and estimated the quality of fit using McFadden’s Pseudo 
R2 [11]. The activated switching genes positively corre-
lated with pseudotime (R2 > 0) were defined as upregula-
tion genes, while the silenced switching genes negatively 
correlated with pseudotime (R2 < 0) were defined as 
downregulation genes. The higher the pseudotemporal 
correlation, the closer the relationship between switching 
genes and the trajectory process.

In addition, GeneSwitches includes the pathways pro-
vided by Molecular Signatures Database (MSigDB) 
hallmark [12], C2 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [13] and C5 gene ontology gene set 
collections and can be used to order pathways or gene 
sets (e.g., functional ontologies). GeneSwitches can 
also compare the ordering of switching genes from two 
related pseudotime trajectories. The common switching 
genes between two trajectories can be plotted. Moreover, 
GeneSwitches can identify and plot the distinct switching 
genes that are specific to each trajectory [10].

Human and mouse expression array
Expression data from two studies of patients with non-
alcoholic fatty liver disease (NAFLD) and a study of 
patients with hepatitis B (HBV) staged for liver fibro-
sis, respectively, were retrieved from the GEO database 
GSE49541 [14], GSE89632 [15], and GSE84044 [16].

Bulk RNA sequencing data were obtained from dataset 
GSE154170 [17], which performed in 4 types of mouse 
samples: isolates of quiescent HSC, isolates of HSC from 
bile duct-ligated (BDL) mice biliary fibrosis model, HSC 
isolates from mice treated with 3,5-diethoxycarbonyl-
1,4-dihydrocollidine (DDC)  diet biliary fibrosis model, 
and isolates of HSC-derived CAF from YAP/AKT or 
KRAS/sg-p19 induced intrahepatic cholangiocarcinoma 
(CCA).

Cell culture and immunofluorescence
Human hepatic stellate LX2 cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) (Invitrogen, 
USA) supplemented with 10% fetal bovine serum (Gibco, 
USA). Recombinant human TGF-β1 was acquired from 
R&D Systems (USA). The antibody against TAGLN was 
purchased from Cell Signaling Technology (USA). Inte-
grin αv  (ITGAV) antibody was purchased from BD Bio-
sciences (USA). The fluorescent secondary antibodies 
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were conjugated with Alexa Fluor 594 (red) or Alexa 
Fluor 488 (green) (Invitrogen, USA). All samples were 
examined using a fluorescence microscope (Nikon, 
Japan).

Statistical analysis
Kruskal–Wallis test in R (version 4.1.0) was applied 
for comparisons among groups. The ClueGO (version 
2.5.8) and CluePedia (version 1.5.8) plugins in Cytoscape 
(https://​cytos​cape.​org/), were used to perform func-
tional enrichment analysis of the identified genes. The 
area under the receiver operating characteristic curve 
(AUROC) was conducted using pROC [18]. Comparison 
of the paired samples from human were performed in R 
and visualized using  ggplot2 [19]. P-values < 0.05 were 
considered as statistical significance. The development 
and validation of the prediction model were detailed in 
the Additional file 1.

Result
Single‑cell analysis of HSCs isolated from healthy mice
After the quality control and the normalization of 
scRNA-seq data (GSE132662) [5], 8500 cells and 15,379 
genes were included in our analysis (Fig. 1A), and 2000 
highly variable genes were identified for subsequent 
analysis (Fig.  1B). Then, the HSCs harvested at day 0, 
1, 3, 7, and 9 in vitro were successfully classified into 14 
separate clusters using t-SNE algorithm (Fig.  1C), and 
top marker genes from all 14 clusters were showed in 
Fig. 1D. Based on the expression patterns of the marker 
genes, cells in cluster 0, 1, 2, 4, 8, 9, and 13 were anno-
tated as quiescent HSC, expressing high levels of quies-
cence markers such as Lrat, Reln, and Rgs5 [20], while 
cells in cluster 3, 5, 6, 7, 10, 11, and 12 were annotated 
as activated HSC, expressing high activation markers 
Acta2, Ccn2, and Timp1 (Fig. 1E).

Fig. 1   Identification of 14 cell clusters in the HSCs cultured in vitro based on single-cell RNA-seq data. A After quality control of the cells from 
mouse HSC samples cultured in vitro, 8500 cells were included in this analysis. B The top 10 highly variable genes are marked in the plot. C t-SNE 
plot displays 14 cell clusters in the HSCs. D The top 10 marker genes of each cell cluster are listed beside of a heatmap. The gene expression levels 
from low to high are showed by colors from purple to yellow. E Violin plot displays the expression of the marker genes of HSC

https://cytoscape.org/
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The differentiation trajectory analysis of HSCs
Furthermore, we visualized the transcriptional profile of 
the HSCs and mapped them along pseudotemporal tra-
jectories. Our data suggested a differentiation trajectory 
from quiescent HSC to activated HSC, enabling the allo-
cation of 3 pseudotime-dependent differentiation states 
for HSC (Fig.  2A). Moreover, the pseudotime of HSC 

transdifferentiation was just in accordance with HSC cul-
ture-activation process in vitro (Fig. 2B, C). Notably, the 
HSCs bifurcated into two diverse branches (state 2 and 
3) (Fig. 2A), representing two cell fates (cell fate 1 and 2) 
(Fig. 2D), respectively. From the perspective of cell sourc-
ing, state 1 (pre-branch) was populated mainly by the 
HSCs harvested at day 0 and partly at day 1. Similar to 

Fig. 2   Simulation of the differentiation trajectory of HSC and the analysis of gene expression pattern. A Trajectory reconstruction of all single cells 
reveals two branches. HSCs are colored by states, which denote branches and can be used to extract paths. Path 1 consists of the cells in states 
1 and 2, while path 2 contains the cells in the states 1 and 3. B HSCs are colored by pseudotime, showing cells developing from state 1 to the 
bifurcation point that gives rise to the final state 2 and 3, respectively. C HSCs harvested at day 0, 1, 3, 7, and 9 are plotted along pseudotemporal 
trajectories. D The branched heatmap shows the dynamics of top 250 differentially expressed genes between the two cell fate branches during 
HSC transdifferentiation. Genes (rows) are divided into four clusters and cells (columns) are ordered according to the pseudotime trajectory. E, F 
Expression patterns of selected genes between two cell fate branches. The full line represents branch 1 (state 1 and 2) while dotted line represents 
branch 2 (state 1 and 3)
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that of state 2 (cell fate 1), the cell composition of state 3 
(cell fate 2) were also from the HSCs harvested at day 3, 
7, 9 and partly at day 1 (Fig. 2A, C, D). Therefore, state 2 
and 3 may correspond to the status of HSC-to-myofibro-
blast transition. In order to gain insights into the process 
of HSC transdifferentiation, we performed a branched 
heatmap to show the gene expression patterns of these 
two cell fate branches based on the dynamics of top 250 
differentially expressed genes. These genes were then 
divided into four clusters (Fig.  2D) according to their 
characterized patterns and listed in Additional file  2: 
Table S1.

As shown in Fig.  2D, the top member genes in clus-
ter 1 were gradually upregulated from the beginning of 
pre-branch (state 1) and reached a high level at the final 
stage in cell fate 2 (state 3). Functional enrichment analy-
sis was performed using ClueGO and CluePedia, which 
indicated that these genes largely enriched in the biologi-
cal processes such as “regulation of cell-substrate adhe-
sion”, “cell–matrix adhesion”, and “extracellular matrix 

assembly” (Fig. 3A, B). Concurrent with the high expres-
sion of activation markers of HSC (e.g.,  Acta2, Ccn2, 
Mmp10, Col1a1, Col4a1, and Col5a2), the expression 
levels of quiescence markers (Lrat, Reln, and Rgs5) in 
branch 2 (including state 1 and 3) rapidly fell off from 
the beginning of state 1 (Fig. 2E). Therefore, the cells in 
state 3 represent classic culture-activated HSCs (myofi-
broblasts) in vitro. Meanwhile, together with downregu-
lated quiescence markers in branch 1 (state 1 and 2), the 
expression levels of Acta2, Ccn2, and Mmp10, markers 
of activated HSC, were also high in state 2 (Fig. 2E), sug-
gesting that the HSCs belonging to state 2 may also be 
activated. However, some collagen genes in state 2 were 
expressed relative lower than those in state 3, such as 
Col1a1, Col4a1, Col5a2 (Fig. 2E).

Interestingly, most ribosomal protein genes in clus-
ter 3 were expressed higher in cell fate 1 (state 2) than 
those in cell fate 2 (state 3) (Fig.  2D), which indicates 
that the cells in state 2 may have higher translational 
capacity to accommodate HSC transdifferentiation and 

Fig. 3  ClueGO and CluePedia were used for biological process annotation of the genes in cluster 1 and 3 of the branched heatmap for HSC 
differentiation trajectory. The bar chart shows GO terms specific for the genes in cluster 1 (A) and 3 (C). The number of genes relevant to the terms 
has been shown. The pie chart with functional groups shows main biological processes related to the genes in cluster 1 (B) and 3 (D). The different 
groups are assigned with individual colors. The groups are ordered according to the proportion of corresponding genes belonging to the groups. 
Two stars indicates to P-value < 0.001
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proliferation than those of the cells in state 3. Apart from 
ribosomal subunit genes, other genes in cluster 3 were 
gradually upregulated in state 1 while their expression 
was no longer increased, even downregulated in state 
3, moreover, these genes were continuously upregu-
lated along branch 1 (state 1 and 2) (e.g., Npm1, Rack1, 
Mif, Cstb, Arpc2, and Krtcap2, etc.) (Fig.  2F). Then, the 
genes in cluster 3 were selected for functional enrich-
ment analysis, which revealed that the functional group 
with the highest percentage of corresponding genes was 
“regulation of signal transduction by p53 class media-
tor”, including “regulation of DNA damage response, 
signal transduction by p53 class mediator”, “intrinsic 
apoptotic signaling pathway by p53 class mediator”, and 
“regulation of protein ubiquitination” (Fig. 3C, D; Addi-
tional file  3: Table  S2), all of which were closely related 
to tumors. Especially, some genes such as Npm1, Rack1, 

Mif, Cstb, and Arpc2 were involved in liver carcinogen-
esis [21–25]. According to the differentiation trajectory 
analysis of HSC, we proposed that state 2 may be a spe-
cific state of HSC, which might be relevant to the regula-
tion of tumorigenesis.

It has been demonstrated that CAFs derived from 
activated HSCs constitute the major population in the 
hepatocellular carcinoma (HCC) stroma and positively 
influence HCC progression [26]. We then analyzed bulk 
RNA-sequencing data from dataset GSE154170 includ-
ing gene expression profiles of quiescent HSCs, activated 
HSCs from BDL or DDC diet biliary fibrosis model, and 
HSC-derived CAFs from CCA model. The results showed 
that genes such as Npm1, Rack1, Mif, Cstb, Arpc2, and 
Krtcap2 were expressed much higher in HSC-derived 
CAFs than those in activated HSCs from BDL or DDC 
model (Fig.  4). These cancer-related genes expressed 

Fig. 4  Visualization of the gene expression pattern of HSCs based on bulk RNA-sequencing data from dataset GSE154170. Kruskal-Wallis test 
examined differences in gene expression among 4 groups of mouse samples which includes: isolates of quiescent HSC, isolates of HSC from 
bile duct-ligated (BDL) mice biliary fibrosis model, HSC isolates from mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) 
diet biliary fibrosis model, and isolates of HSC-derived CAF from intrahepatic cholangiocarcinoma (CCA) model. P < 0.05 was considered as 
statistically significant
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in the HSCs belonging to state 2 seemed to share simi-
lar expression features with those in the HSC-derived 
CAFs (Fig. 2F). Therefore, we inferred that the HSCs in 
state 2 may be an important origin of CAFs in liver tumor 
microenvironment (TME).

Additionally, to gain insight into the activation of HSCs 
in vivo, we analyzed a scRNA-seq dataset GSE137720 [4] 
of HSCs isolated from healthy and CCl4-treated mouse 
liver. As shown in Additional file 4: Fig. S1, the differen-
tiation trajectory of the HSCs also revealed two branches. 
The cell composition of state 1 were mainly from quies-
cent HSCs, state 2 (cell fate 1) corresponded to the sta-
tus of HSC-to-myofibroblast transition, and state 3 (cell 
fate 2) may be the novel state of HSC. Functional enrich-
ment analysis indicated that the top genes expressed in 
the HSCs belonging to state 3 enriched in the biologi-
cal processes such as “ubiquitin ligase inhibitor activity”, 

“ribosomal large subunit biogenesis”, “signal transduction 
by p53 class mediator” (Additional file 5: Fig. S2), which 
also were associated with tumors. Some genes such as 
Npm1, Dynll1, Ran, Cfl1, Eif5a, Mif, and Arpc2 were rela-
tive to HCC [21, 23, 25, 27–30].

Identification of switching genes during HSC activation
In Fig. 2, GeneSwitches was first applied to the single tra-
jectory branch 2 (state 1 and 3) in which cells differentiate 
from quiescent HSCs (state 1) to classic culture-activated 
HSCs (state 3). As shown in Fig.  5A, induction of ribo-
somal subunit genes was an early switching event along 
the pseudotime trajectory, followed by the upregulation 
of Hspb1, Hmox1, Tnfrsf12a, Cdkn1a, Thbs1, Acta2, Xist, 
and the downregulation of Ntm, Ecm1, Colec11, Vipr1, 
and Angptl6, etc. Among them, Xist (x inactive specific 
transcript) and Angptl6 (angiopoietin like 6) showing the 

Fig. 5  GeneSwitches analysis of scRNA-seq data from HSCs. A Visualization of the order of top fitting switching genes from various sets of known 
proteins along the pseudotime. The absolute value of the y-axis is the quality of fitting defined by McFadden’s Pseudo R2, and the positive and 
negative signs indicate up- and down-regulation respectively. TFs, transcription factors. B Top 10 significantly changed pathways are plotted and 
ordered by the switching time. Ridge plots of pathways genes showing the density of switching genes. Numbers in parenthesis indicate the 
number of switching genes and total genes in the functional ontology respectively. C Visualization of the order of top fitting common switching 
genes between two paths along the pseudotime. D Visualization of top fitting distinct switching genes from the two paths along the pseudotime, 
i.e., genes that are only switching in one path and not the other.
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highest quality of fit  determined by McFadden’s Pseudo 
R2 [10], may be critical switching genes to regulate HSC 
activation (Fig.  5A). The top biological pathways from 
GO and HALLMARK enrichment analysis of differen-
tially expressed genes along the pseudotime trajectory 
branch 2 showed that wound healing-related genes were 
upregulated at an early time, followed by ribosome path-
ways, oxidoreductase-related ontologies, and EMT (epi-
thelial mesenchymal transition) later in the pseudotime 
(Fig. 5B), simulating an in vitro gene expression pattern 
with similarities to that of quiescent HSC transition to 
myofibroblast during liver fibrogenesis.

According to the pseudotime analysis performed by 
Monocle2, the trajectory of HSC-to-myofibroblast transi-
tion starts from state 1, which are quiescent HSCs. Clas-
sic culture-activated HSCs are in state 3 and the novel 
state of HSC is state 2 (Fig.  2A).  By GeneSwitches, we 
plotted common switching genes between two branches 
to compare their ordering. It showed that the top fitting 
common switching genes, such as Cdkn1a, Tnfrsf12a, 
Hmox1, Thbs1, Acta2, Timp1, and Xist were upregulated 
successively, while Vipr1, Steap4, Angptl6, Rgs5, Tgfbi, 
and Pth1r were downregulated (Fig.  5C). GeneSwitches 
also identified some distinct switching genes for the new 
state of HSC, such as Rps27, Eif4a1, Krtcap2, Clic1, and 
Ankrd1, etc., whereas state 3 gained only Fau and Rpl30 
at an early time (Fig. 5D).

Identification of highly predictive fibrosis markers
As revealed in Fig. 2, branch 2 (state 1 and 3) follows clas-
sic HSC culture-activation trajectory, top switching genes 
in state 3 are potential diagnostic markers for advanced 
or severe fibrosis where current clinical indicators gen-
erally exhibit suboptimal sensitivity. To identify which 
genes are able to discriminate different stages of fibrosis, 
we analyzed publicly microarray data of liver biopsies 
from patients with NAFLD [14].

As shown in Fig.  6, the expression of  AEBP1, ITGAV, 
LOXL2, and  TAGLN was significantly different (false 
discovery rate [FDR] < 0.05) between patients with mild 
NAFLD (fibrosis stage F0-F1, n = 40) and advanced 
NAFLD (F3–F4, n = 32) (Fig.  6A). We then evaluated 
the diagnostic accuracy of the individual genes and a 
combination of four genes,  AEBP1, ITGAV, LOXL2, 
and  TAGLN  (A-I-L–T), identified from the top switch-
ing genes by logistic regression. The model formula was 
shown as: P(probability) = e

R

1+eR
 , R = − 86.283 + (4.733 * 

expression level of AEBP1) + (5.405 * expression level of 
ITGAV) + (− 7.488 * expression level of LOXL2) + (5.354 
* expression level of TAGLN). Noticeably, the combi-
nation gene A-I-L-T effectively identified severe fibro-
sis with an AUROC of 0.979 (95% confidence interval, 
0.953–1.000) (Fig. 6A), sensitivity of 0.938, and specificity 

of 0.950, resulting in 95% detection of patients with 
advanced fibrosis.

Furthermore, the validation of this four-gene combi-
nation on another NAFLD cohort [15]  resulted in an 
AUROC of 0.830 (0.689–0.971) for the identification of 
advanced fibrosis (stage F3–4) (Fig. 6B). In addition, on 
an HBV cohort [16], the A-I-L-T  gene combination also 
exhibited a good discrimination for significant fibrosis 
(stage F3–F4) with an AUROC of 0.861 (0.772–0.951) 
(Fig.  6C). These findings indicated that our four-gene 
combination derived from HSC activation trajectory 
translated into human hepatic fibrosis and accurately 
predicted the severity of liver fibrosis caused by diverse 
etiology.

Most HCCs develop from severe liver fibrosis and cir-
rhosis. So, we investigated the mRNA expression of these 
four genes in HCC and normal tissues from public data-
sets. The results showed that ITGAV and LOXL2  pre-
sented higher expression in tumor tissues than those in 
paracancerous tissues (TCGA-LIHC, https://​portal.​gdc.​
cancer.​gov/​proje​cts/​TCGA-​LIHC) (p < 0.001, Additional 
file 6: Fig. S3A). A similar result was obtained in another 
HCC and paracancerous  samples from GEO database 
(GSE41804) [31] (p < 0.05, Additional file 6: Fig. S3B).

Validation of the genes expressed in human‑derived HSC
To validate above findings in human HSC, the expression 
of genes relative to HSC activation, new state of HSC, 
and predicting fibrosis respectively were investigated 
between paired (quiescent and culture-activated) HSCs 
isolated from three human livers based on the dataset 
GSE68000 [32]. As revealed in Additional file 7: Fig. S4A, 
the expression of activation markers ACTA2, MMP10, 
COL1A1, COL4A1, and COL5A2 in activated HSCs were 
higher than those in quiescent HSCs (p < 0.05). While 
the expression of quiescence markers LRAT​, RELN, and 
RGS5 was not decreased in activated HSCs. Two genes 
(RACK1 and ARPC2) relative to the new state of HSC 
were expressed higher in activated HSCs than those 
in quiescent HSCs (p < 0.05, Additional file  7: Fig. S4B). 
The expression of other new-state related genes, such as 
NPM1, MIF, KRTCAP2, EEF1B2, MRPL52, and SEC61B 
was also increased in activated HSCs, however the dif-
ferences between two groups were not statistically sig-
nificant. The fibrosis marker ITGAV presented higher 
expression in activated HSCs than that in quiescent 
HSCs (p < 0.001, Additional file 7: Fig. S4C). The expres-
sion of AEBP1, LOXL2, and TAGLN was also increased in 
activated HSCs, but the differences between two groups 
had no statistical significance.

Recombinant human TGF-β1 can evidently 
enhance the activation of LX2 cells (a human HSC 
cell line) [33]. Then, we validated the induction 

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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of  ITGAV  and  TAGLN  by immunofluorescent analysis 
in LX2 cells, showing highly increased expression of both 
genes in TGF-β1-treated LX2 compared to untreated 
LX2 (Additional file 8: Fig.  S5).

Discussion
Abnormal activation, proliferation, and migration of 
HSCs cause hepatic fibrosis and cirrhosis [34]. HSC-
to-myofibroblast transition is a key event during liver 
fibrogenesis induced by diverse chronic liver injury. The 
scRNA-seq data (GSE132662) obtained from the HSCs 
cultured in  vitro and harvested at day 0, 1, 3, 7, and 9 
were analyzed in this study. Our results revealed a novel 
cell state during HSC activation, which may be relevant 

to CAFs. Moreover, we identified some switching genes 
contributing to HSC activation, and established a four-
gene combination to predict advance hepatic fibrosis in 
patients with NAFLD or HBV.

That primary HSCs isolated from healthy mouse were 
cultivated for up to 7 days on uncoated plastic dishes is 
the classic model of HSC-to-myofibroblast transition 
[35]. In the present study, we in silico reconstructed a 
pseudotime trajectory of HSC transdifferentiation based 
on the single-cell transcriptomic data of the culture-acti-
vated HSC in vitro, and identified a novel state of HSC. 
Compared with classic activated HSC, the cells belong-
ing to the new state express high HSC activation mark-
ers as well as relatively low collagen genes, but express 

Fig. 6  Identification of highly predictive fibrosis markers in patients with chronic liver diseases. A Differential expression of switching genes derived 
from HSC differentiation trajectory analysis in human biopsies from NAFLD patients with mild (F0–F1, n = 40) or advanced (F3–F4, n = 32) fibrosis. 
Average expression, standard error, and FDR-values from differential expression analysis are shown. ROC curves show the discriminatory power of 
each transcript and of the combination of AEBP1, ITGAV, LOXL2, and TAGLN (A-I-L-T). For validation of this four-gene combination, ROC curves were 
drawn using the microarray data from another NAFLD cohort with mild (F0–F2, n = 31) or significant (F3–F4, n = 8) fibrosis (B), and from HBV 
patients with mild (F0–F2, n = 96) or severe (F3–F4, n = 28) fibrosis (C). SE sensitivity, SP specificity, AEBP1 adipocyte enhancer binding protein 1, 
ITGAV integrin subunit alpha V, LOXL2 lysyl oxidase like 2, TAGLN transgelin
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high levels of genes enriched for the regulation of sig-
nal transduction by p53 class mediator, some of which 
were involved in the biological pathways related to can-
cer. For example, it has been demonstrated that Rack1 is 
highly expressed by activated HSC and upregulated in 
HCC [36], moreover, Rack1 can promote self-renewal of 
cancer stem cells in patients with HCC [22]. Npm1 was 
identified in diverse cellular processes such as ribosome 
biogenesis, cell proliferation, and regulation of tumor 
suppressors p53/TP53 [37]. It’s associated with HCC 
[21]. The expression of Mif and Cstb in liver tissue were 
also verified to be involved in liver carcinogenesis [23, 
24].

Liver fibrosis is a wound healing and scar 
repair  response to liver injury. Tumors are considered 
as “wounds that never heal”, and more than 80% of HCC 
develop from cirrhosis caused by chronic liver diseases 
such as viral hepatitis and NAFLD [38, 39]. Activated 
HSCs had been found in the stroma of HCC [40], and 
activated peritumoral HSCs were demonstrated to be 
associated with tumor recurrence and mortality [41]. 
CAFs, a key player in hepatocarcinogenesis, probably 
mainly originate from HSC and may play an essential role 
in the pathogenesis of HCC and CCA [17, 42, 43]. TME 
is defined as the tumor cell population in a complex mix-
ture of surrounding stroma, including CAFs, endothe-
lial cells, immune cells, and ECM [44]. Recently, it has 
been proposed that the premalignant microenvironment 
(PME) should be differentiated between the TME in 
HCC. PME characterized by chronic liver injury, inflam-
mation, and fibrosis, precedes tumor development [43]. 
We supposed that the HSCs belonging to the novel state 
may be an important component in PME and have the 
potential to convert into CAFs in TME. Further studies 
on the fate tracing of this specific state of HSC and regu-
lation mechanisms of HSC-to-CAF transition may con-
tribute to approach the goal of targeting myofibroblasts 
in the PME or TME for tumor prevention or therapy.

By GeneSwitches, we identified a lot of switching 
genes along the pseudotime trajectory of HSC transdif-
ferentiation. Xist, a long noncoding RNA, can regulate 
HSC activation by enhancing ethanol-induced HSC 
autophagy [45]. Interestingly, other switching genes 
Hmox1, Hspb1, Tnfrsf12a, Cdkn1a, and Thbs1 also have 
been regarded as modulators of autophagy [46–50]. We 
assumed that autophagy in HSC may strongly contrib-
ute to HSC activation at an early stage. On the other 
hand, the expression of Angptl6, a regulator of the 
chemotactic activity of endothelial cells and inducer 
of neovascularization [51] were downregulated dur-
ing HSC activation. We inferred that Angptl6 may be 
related to HSC functionality in healthy liver and HSC-
to-myofibroblast transition in liver injury. Moreover, 

GeneSwitches identified some distinct switching 
genes for the new state of HSC and the classic cul-
ture-activated HSC, respectively. The identification of 
these switching genes that are specific to each trajec-
tory (state) along with their timings may facilitate fur-
ther experiments to reveal the determinants of these 
bifurcations.

Using Monocle2 and GeneSwitches approaches on 
the HSC population resolved in pseudotime, we identi-
fied top switching genes correlated with HSC activation. 
Our results showed that genes mirroring HSC transdif-
ferentiation trajectory have potential diagnostic value in 
the prediction of advanced hepatic fibrosis from biopsy 
gene expression data in patients with NAFLD or HBV. 
Particularly, the four-gene combination, AEBP1, ITGAV, 
LOXL2, and TAGLN, exhibited high accuracy in predict-
ing fibrosis severity. AEBP1 encoded protein plays a role 
in adipogenesis and smooth muscle cell differentiation. 
Importantly, its expression upregulates with worsening 
fibrosis in liver biopsies from patients with nonalcoholic 
steatohepatitis [52]. LOXL2 is essential to the biogen-
esis of connective tissue and mediates collagen crosslink-
ing. It was strongly expressed in fibrotic liver in mice, 
moreover, inhibition of LOXL2  attenuates thioaceta-
mide-induced hepatic fibrosis [53]. Integrin αV, encoded 
by ITGAV gene, is closely associated with fibrosis in sev-
eral organs  [54]. TAGLN is an early marker of smooth 
muscle differentiation and regarded as an important tar-
get in anti-HBV-positive HCC [55]. According to COM-
PARTMENTS Subcellular localization database (http://​
compa​rtmen​ts.​jense​nlab.​org) [56], we found that AEBP1 
and LOXL2 encode secreted proteins while ITGAV and 
TAGLN are located in cytosol or extracellular. Our find-
ings indicated that ITGAV and TAGLN expression were 
mainly in the cytoplasm of activated human HSC. These 
four genes have the potential to serve as predictive mark-
ers of advanced fibrosis in patients.

There are several limitations in this study. First, the 
results analyzed using bulk RNA-seq data of HSCs iso-
lated from human liver showed to some extent differ-
ences from the findings obtained from scRNA-seq data 
of HSCs isolated from mouse liver. Besides species differ-
ence, that the sample size of HSCs isolated from human 
is too small may contributed to the differences in results. 
In the further study, we plan to obtain scRNA-seq data of 
HSCs isolated from human liver including quiescent and 
culture-activated HSC and perform analyses to validate 
our findings derived from mouse HSCs. Second, before 
using the four-gene combination (A-I-L-T) to identify 
advanced liver fibrosis among patients with chronic 
liver diseases, the serum levels of transcripts or proteins 
of these four genes want to be evaluated in healthy and 
patients.

http://compartments.jensenlab.org
http://compartments.jensenlab.org
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Conclusions
In summary, we revealed a novel cell state during HSC 
activation and inferred that HSCs in this state may be an 
important origin of CAFs in TME. Moreover, we identi-
fied some critical switching genes relevant to HSC acti-
vation and established a four-gene combination which 
may serve as predictive markers of advanced fibrosis in 
patients with chronic liver diseases.
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