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Abstract 

Introduction:  Lipid metabolism and endoplasmic reticulum (ER) stress play an important role in the progression 
and metastasis of hepatocellular carcinoma (HCC). We aimed to establish lipid droplet (LD)-associated and ER stress-
related gene risk signature as prognostic indicators.

Materials and methods:  Literature searches for LD-associated proteins was screened and validated in The Cancer 
Genome Atlas (TCGA) and International Cancer Genome Collaboratory (ICGC) databases. A total of 371 samples were 
enrolled from the TCGA RNA-seq dataset (training cohort) and 240 samples from IGGC RNA-seq dataset (validation 
cohort). A 10-gene risk signature was established by the last absolute shrinkage and selection operator (LASSO) 
regression analysis. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan–Meier and 
ROC Curve analyses. Biological features associated with LD and ER stress-related factors were explored by functional 
analysis and in vitro experiment.

Results:  Based on the medical literatures, 124 lipid droplet-associated proteins were retrieved, and three genes failed 
to establish a valid prognostic model. ER stress was considered as an important component by functional analysis. A 
10-gene risk signature compared the clinicopathology characteristics, immunosuppressive events and a nomogram 
in HCC patients.

Conclusion:  LD-associated and ER stress-related gene risk signatures highlighted poor prognosis for clinicopatho-
logical features, positively correlate with macrophages and T cell immunoglobulin and mucin-3 (TIM-3) expression in 
the tumor microenvironment, and might act as independent prognostic factors.

Keywords:  Hepatocellular carcinoma, Gene risk signatures, Lipid droplet-associated protein, Endoplasmic reticulum 
stress, Overall survival, Immune microenvironment

Introduction
HCC is the fourth highest cancer-related mortality 
worldwide [1, 2] and the second leading cause of can-
cer mortality [3]. As we known, hepatitis B virus (HBV) 
infection is a key undesirable factor but does not accu-
rately predict the risk of causing HCC [3]. Contemporary 
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epidemiological observations suggest that the etiology 
of cirrhosis and HCC is gradually changing from viral 
hepatitis to non-alcoholic fatty liver Disease (NAFLD)/ 
non-alcoholic Steatohepatitis (NASH) with the increase 
of metabolic diseases such as overweight and diabetes 
[4, 5]. Thus, viral pathogenesis and metabolic disease are 
jointly involved in the transition from NAFLD/NASH 
to HCC, a process that may be related to tissue lipid 
metabolism at least [6]. The presence of abnormal LD 
metabolism contributes to the development of HCC due 
to the involvement of the microbiota, insulin resistance, 
inflammation, and important cellular physiological pro-
cesses, including cell division, expansion, differentiation, 
and motility [7, 8].

In addition, ER stress arises in the folding of pro-
teins within the secretion pathway [9]. In a very recent 
study, an ER stress has been determined to be an 
important factor in HCC promoted by NAFLD [10] 
and involved in the promotion and advancement in 
many cancers [11, 12], as well as in the growth of can-
cer proliferation and resistance to radiation or chemo-
therapy in a hypoxic environment [13]. ER stress may 
be a worthy therapeutic candidate. Currently, the 
relationship between ER stress and the biologic fea-
tures and prognosis of HCC is not yet clear. In addi-
tion, molecular characterization still does not predict 
prognosis, surgical success or risk of recurrence after 
ablation [14] or optimal treatment options [15]. It is 
becoming increasingly important whether the charac-
terization of molecular mechanisms can guide clini-
cians in the comprehensive assessment of survival and 
biological features.

In this paper, no valid prognostic model was found 
when the differential genes after literature search were 
analyzed based on TCGA and ICGC datasets for LD-
associated genes. In contrast, functional enrichment 
analysis by CRISPR/cas9 knockout library screening of 
Hep3B and SNU398 identified ER stress as an impor-
tant factor involved. Therefore, a genetic risk signature 
was established by cross-genes of LD-associated and ER 
stress. This study explored clinicopathological features, 
immunological events and nomograms, which were 
found to be prominent in estimating 1, 3, and 5-year sur-
vivals in patients with HCC.

Materials and methods
Literature search for selecting LD‑associated factors
The literature was searched in the PubMed database with 
the search formula "((LD Proteins or) AND Proteins, LD 
or) AND LD Coat Proteins" (last search date: February 
22, 2022). There was no restriction on when the article 
was published, and the original publication date was 

detected as 1983. The categories "full text" and "free full 
text" were selected, excluding the categories "Review" and 
"Systematic review".

Data collection
LD-associated genes and ER stress genes from Genecards 
(https://​www.​genec​ards.​org/) and select these genes with 
correlation scores ≥ 7 as screening criteria. Tumor RNA-
seq material (level 3) and medical data were obtained 
from TCGA (https://​portal.​gdc.​com) and ICGC (https://​
dcc.​icgc.​org/​relea​ses/​curre​nt/​Proje​cts) datasets.

UALCAN analysis
Differentially expressed genes (DEGs), protein and sur-
vival analyses in the Clinical Proteomics Tumor Analysis 
Consortium (CPTAC) were undertaken in the UALCAN 
platform (http://​ualcan.​path.​uab.​edu/) [16, 17]. Then, 
univariate Cox regression and Kaplan–Meier analysis 
were utilized to determine LD-associated genes.

Assistant for Clinical Bioinformatics (ACLBi) analysis
DEGs and overall survival (OS) analyses were conducted 
on the ICGC dataset (RIKEN, Japan) using the ACLBi 
(http://​www.​acbi.​com) platform [18–22]. Box-line plots, 
univariate Cox regression, and Kaplan–Meier analysis 
were applied to identify LD-associated genes.

Survival Analysis
Crossover genes were selected in TCGA and ICGC 
datasets, OS was compared across groups using the sur-
vival and survminer R packages, and time-dependent 
ROC curves predicting prognosis of HCC patients were 
created using the survROC R package to create time-
dependent ROC curves in predicting the prognosis of 
HCC patients.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses were obtained 
from the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [23] (http://​david.​ncifc​
rf.​gov/) to identify biological processes that are closely 
associated with risk signature. Further analysis of GO and 
KEGG pathways for risk scoring was performed using the 
following R software clusterProfiler package for differen-
tially expressed genes.

Construction and validation of LD and ER stress‑related 
signature
The genes were narrowed down by performing LASSO 
regression by using the glmnet R package of the TCGA 
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database. The risk score of each sample was determined 
using the formulas below:

In this equation, where βi is the value of expression of 
the LD-associated genes with χi being the Cox regression 
coefficients calculated by multivariate regression. Subse-
quently, the Akaike information criterion (AIC) method 
was used to perform the optimal survival risk model for 
LD-related genes and ER stress genes upon a linear inte-
grated multivariate derived regression coefficients.

cBioportal analysis of genetic alterations
The cBioportal (https://​www.​cbiop​ortal.​org/) [24, 25] was 
chosen to explore the list of 8 studies containing genetic 
alterations characteristic of HCC.

The Human Protein Atlas (HPA) protein expression
The HPA website (https://​www.​prote​inatl​as.​org/). was 
used to demonstrate protein expression for each of the 
10 genes and to use the "Pathology" section to show the 
impact of protein levels on survival in HCC patients.

Clinicopathological features
To determine whether risk features were correlated 
with clinicopathologic factors (including age, sex, and 
race, histological grade, T and TNM stage), correlations 
among these factors were presented as box plots.

Immune cell fractions and immune checkpoints
Myeloid-derived suppressor cells (MDSCs) [26], Regu-
latory T (Treg) cells [26], natural killer (NK) T cells [27] 
and neutrophils [28] within the HCC micromanage were 
thought in association with immune suppression. Con-
sidering the key role played by tumor mutation burden 
(TMB) and microsatellite instability (MSI) in tumor 
immunosuppression and immunotherapy, correlations 
among risk characteristics and immune infiltrating cells, 
immune checkpoints, TMB and MSI were analyzed.

Development and evaluation of the nomogram
Age, sex, race, viral infection, tumor grade, TNM and 
T stage, and risk score were combined to create the 
nomograms using the survivals and rms R packages. 
Calibration curves were used to assess the accuracy of 
nomograms in predicting 1-, 3-, and 5-year survival in 
patients with HCC [29, 30].

Statistical analysis
This study mainly used R software (version 3.6.1) and 
GraphPad Prism v7.00 (GraphPad Software, Inc.). 

N

i=1
βiXi

Wilcoxon test was used in comparing the variances 
among both groups, and the Kruskal- Wallis H test was 
applied for comparing multiple for multiple groups. Two-
sided Mann–Whitney U test was performed for two-way 
comparisons in clinicopathological characteristics, and 
two-sided chi-square test or exact test for 2-independent 
samples was used for categorical variables. Quantitative 
data were calculated as the mean values with standard 
deviation (SD). P < 0.05 it was considered to be statistical 
significances.

Results
Selection of LD‑associated factors
Based on the literature search and analysis, 124 results 
were found for LD- associated factors (Table S1, Fig. S1). 
The selection criteria included not only LD factors but 
also some protein-mediated LD related organelles, such 
as ER, mitochondria, Golgi apparatus and lysosomes.

Differences of gene expression and OS are significant 
based on the TCGA dataset
RNA-seq expression data of 124 genes related to lipid 
metabolism based on the TCGA dataset were analyzed. 
A genetic heat map was drawn between HCC patient 
specimens and normal tissues (Fig. S2). Ninety-six DEGs 
were identified, including 71 up-regulated and 25 down-
regulated genes (Table  1). Fourteen of these genes were 
selected due to differences in gene expression, OS, and 
univariate COX analysis (Figs. S3, S4, S5, S8a).

Six genes (annexin A2 (ANXA2), b cell receptor-asso-
ciated protein 31 (BCAP31), cytoskeleton-associated 
protein 4 (CKAP4), hydroxysteroid 13 (HSD17B13), 
interleukin-1 receptor-associated kinase (IRAK1), 
squalene epoxidase (SQLE)) was screened by the ICGC 
database (Table 2). ANXA2 is correlated with therapeutic 
resistance to various cancer forms [31]; BCAP31 encoded 
protein involved to transport membrane proteins from 
ER to Golgi [32]; CKAP4 is an obsolete signal trans-
ducer activity and involved in protein metabolism [33]; 
HSD17B13 has steroid dehydrogenase activity and func-
tions within the upstream or positive regulation of lipid 
biosynthetic progress [34, 35]; IRAK1 provides protein 
kinase activity and contributes to the partial upregula-
tion of the IL 1-induced transcription factor NF-kappa 
B [36]; SQLE acquires oxidoreductase activity, the first 
oxygenative step in sterol biosynthesis [37]. In terms of 
ER activity and protein-lipid metabolism, these six genes 
play different roles in regulating cell growth and signal 
transduction pathways.

In HCC cells, these genes were upregulated except 
for HSD17B13 (Fig. S6). The high expression of this 
gene indicated a good prognosis of patients (Fig. S7) 
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and was considered as a protective factor (Fig. S8b). 
Based on the available literature, six genes were iden-
tified, but similar results could not be obtained in 
both databases by further prognostic analysis. Find-
ing intrinsic association mechanisms to optimize risk 
models for genes becomes critical.

Valueless prognostic model in TCGA and ICGC database 
and biological function in HCC
Three genes (ANXA2, CKAP4, and IRAK1) from the 
TCGA and ICGC datasets were screened. The higher 
level of these genes presented the poorer prognosis, 
and the AUC of these genes predicting OS decreased 

Table 1  The differences in gene expression, protein expression, and survival analysis of 125 genes in TCGA dataset

TCGA​ The Cancer Genome Atlas, DEGs Differentially expressed genes, OS Overall survival
****  P < 0.001
***  P = 0.01–0.001
**  P = 0.05–0.01
*  P ≥ 0.05

Factors DEGs OS Protein 
expression

Factors DEGs OS Protein 
expression

Factors DEGs OS Protein 
expression

ABHD5 * / / FGF21 ****↑ * / PLIN3 ****↑ *** ****↓
ACAT1 ****↓ * / FIG4 ****↑ **** ****↓ PLIN4 **↓ * /

ACSL3 ****↑ *** ****↑ FITM1 ****↓ * / PLIN5 ****↑ * /

ACSL4 ****↑ * / FITM2 ****↑ ** * PNPLA2 ****↑ * /

ACOX1 ****↓ * / G0S2 **↓ * / PNPLA3 **↓ * /

AGPAT2 **↓ * / GAPDH ****↑ *** ****↓ PNPLA4 * / /

AIFM2 ****↑ ** **↑ GBF1 ****↑ * / PNPLA5 * / /

ANXA2 ****↑ ** ****↑ GIMAP2 ****↑ * / PRPF19 ****↑ **** ****↑
APOA4 ***↓ * / HSD17B11 ***↑ * / RAB18 ****↑ ** *

APOB ****↓ * / HSD17B13 ****↓ * / RAB3GAP1 ****↑ * /

AQP1 **↑ * / HSD3B7 ****↑ * / RAB5A ****↑ * /

ARAP2 * / / HSPA5 ****↑ ** * RAB5C ****↑ ** *

ATG2A * / / IRAK1 ****↑ ** ****↑ RAB7A ****↑ **** ****↓
ATG2B ***↓ * / LIPE ***↑ * / RAB8A ****↑ * /

AUP1 ****↑ **** ****↑ LMLN ****↑ * / RAP1B ****↑ ** ****↓
BCAP31 ****↑ * / LPCAT1 ****↑ **** ****↑ RBP1 ***↓ * /

BSCL2 ****↑ * / LPCAT2 ****↑ ** * RSAD2 * / /

CAV1 ****↑ * / LPIN1 ****↑ * / SCCPDH ****↑ * /

CAV2 ****↓ * / LSS ****↑ * / SCD ****↑ * /

CDKN1A * / / MAP4K4 ****↑ * / SET ****↑ **** ****↑
CES1 ***↓ * / MBOAT7 ****↑ **** ****↑ SIGMAR1 ****↑ * /

CIDEA * / / METTL7A ****↓ * / SNAP23 ****↑ * /

CIDEB ****↓ * / METTL7B * / / SPAST ****↑ ** ***↑
CIDEC ****↑ ** - MGLL * / / SPG20 ****↓ ** -

CKAP4 ****↑ *** ****↑ MTTP ****↓ * / SQLE ****↑ ** ****↑
CYB5R3 ****↑ *** ****↓ NAPA ****↑ * / STARD13 ****↑ * /

DBC1 * / / NCEH1 ****↑ * / STX5 ****↑ * /

DFFA ****↑ *** * NNMT ****↓ * / SYNGR2 ****↑ ** ****↑
DGAT1 ****↑ * / NSDHL ****↑ * / TMEM135 ****↑ * /

DGAT2 ***↓ * / NSF ****↑ * / TRAF6 ****↓ * /

EDA ****↑ ** - OSBPL2 ****↑ * / TSC1 ****↑ *** *

EHD1 ****↑ **** ****↓ PCYT1A ****↑ *** ****↑ UBE2G2 ****↑ * /

FAAH2 * / / PEMT ****↓ * / VAMP4 ****↑ * /

FABP1 ****↓ * / PITPNM1 ****↑ * / VAPA ****↑ * /

FABP4 ****↑ * / PLD1 * / / VCP ****↑ * /

FAF2 ****↑ *** ****↑ PLIN1 ***↓ * /

FASN ****↑ * / PLIN2 ****↓ * /
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gradually over time in both datasets (Fig. S9a, b, S10a, 
b, c, d). However, these genes did not serve as valid 
factors for the nomogram to predict the 1-, 3-, 5-year 
survival probabilities of patients in the TCGA dataset 
(Fig. S11a, b, c, d). In other words, the high expression 

of the three genes in the TCGA and ICGC databases 
represented a poor prognosis, but did not establish a 
valid prognostic model. Therefore, these three genes 
do not serve as valuable markers to improve clinical 
guidance.

Table 2  The differences in gene expression, Kaplan–Meier survival analysis, and COX analysis of 114 genes in ICGC dataset

ICGC​ International Cancer Genome Collaboratory, DEGs Differentially expressed genes
****  P < 0.001
***  P = 0.01–0.001
**  P = 0.05–0.01
*  P ≥ 0.05

Factors DEGs Log rank P Cox P Factors DEGs Log rank P Cox P Factors DEGs Log rank P Cox P

ABHD5 * / / FIG4 * / / PLIN2 * / /

ACAT1 * / / FITM1 ****↓ * /* PLIN3 * / /

ACSL3 * / / FITM2 * / / PLIN4 * / /

ACSL4 ****↑ * * G0S2 ****↓ * / PLIN5 * / /

AGPAT2 * / / GAPDH * / / PNPLA2 * / /

AIFM2 * / / GBF1 * / / PNPLA3 * / /

ANXA2 ****↑ *** ** GIMAP2 * / / PNPLA4 * / /

APOA4 ****↓ * / GPAT4 * / / PRPF19 * / /

APOB * / / HILPDA * / / RAB18 * / /

AQP1 * / / HSD17B11 * / / RAB3GAP1 * / /

ARAP2 * / / HSD17B13 ****↓ *** *** RAB5A * / /

ATG2A * / / HSD3B7 * / / RAB5C * / /

ATG2B * / / HSPA5 * / / RAB7A * / /

AUP1 * / / ICE2 * / / RAB8A * / /

BCAP31 ****↑ *** *** IRAK1 ****↑ **** *** RAP1B * / /

BSCL2 * / / LDAH * / / RBP1 ****↓ * /

CAV1 * / / LIPE * / / RSAD2 * / /

CAV2 * / / LMLN * / / SCCPDH * / /

CAVIN1 * / / LPCAT1 * / / SCD * / /

CDKN1A * / / LPCAT2 * / / SET * / /

CES1 * / / LPIN1 * / / SIGMAR1 * / /

CIDEB ****↓ * / LSS * / / SNAP23 * / /

CIDEC * / / MAP4K4 * / / SPAST * / /

CKAP4 ****↑ *** **** MBOAT7 * / / SQLE ****↑ *** **

CPT1A * / / METTL7A * / / STARD13 * / /

CTDNEP1 * / / METTL7B * / / STX5 * / /

CYB5R3 * / / MGLL * / / SYNGR2 * / /

DFFA * / / MTTP * / / TMEM135 * / /

DGAT1 * / / NAPA * / / TPD52 * / /

DGAT2 * / / NCEH1 * / / TRAF6 * / /

DNAAF1 * / / NNMT ****↓ * / TSC1 * / /

EDA * / / NSDHL * / / UBE2G2 * / /

EHD1 * / / NSF * / / VAMP4 * / /

FAAH2 * / / OSBPL2 * / / VAPA * / /

FABP1 ****↓ * / PCYT1A * / / VCP * / /

FABP4 * / / PEMT ****↓ * / VMP1 * / /

FAF2 * / / PITPNM1 * / /

FASN * / / PLD1 * / /

FGF21 * / / PLIN1 * / /
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To explore more information about lipid related infor-
mation in HCC, GO and KEGG pathway analysis was 
performed by DAVID online tool based on the list of 
genes provided above. As shown in Fig. 1, the functions 
of these genes were mainly focused on processes such 
as protein transport and lipid granulation from the ER 
to the cytoplasm (Fig.  1a); the KEGG pathway showed 
that this signal was positively correlated with the glyc-
erophospholipid metabolic signaling pathway (Fig.  1b). 
However, KEGG and GO analyses were not performed 
for HCC. Therefore, the intrinsic association associated 
with HCC was verified and screened in the next cellular 
experiments performed.

CRISPR/cas9 library screening identify ER stress as a strong 
correlate factor of LDs
The specific process of CRISPR/cas9 knockout library 
screening was reported in our previous study [38]. 

Sixty-seven LD-associated genes were found in Hep3B 
cells and 57 LD-associated genes were enrolled in 
SNU398 cells from the Genecards tool. Functional 
enrichment analysis revealed that in Hep3B cells, the 
top 5 positions of GO analysis were protein binding, 
plasma membrane, ER, mitochondria and active regu-
latory of RNA Polymerase II initiator transcription 
and membrane components, plasma membrane, cyto-
plasm, ER membrane and ER and mitochondria were 
revealed in SNU398 cells (Fig.  2a, b). The ER protein 
pathway and cholesterol metabolism were illustrated 
in KEGG pathway of the Hep3B cells and the SNU398 
cells, separately (Fig. 2c, d). This part of the results is 
more indicative of the fact that the strongest intrinsic 
link to LDs correlation in HCC is ER stress, further 
validating the results obtained from online database. 
Screening for crossover genes for LDs and ER stress 
was next continued.

Fig. 1  Functional enrichment analysis based on differentially expressed genes from literature research. a GO analysis. b KEGG pathway analysis. GO: 
Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes, BP: biological processes, CC: cellular components, MF: molecular function
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Fig. 2  Functional enrichment analysis based on differentially expressed genes from CRISPR/cas9 knockout library screening of Hep 3B cells and 
SNU398 cells about lipid droplet-associated genes from Genecards tool. a, b GO analysis in Hep 3B and SNU 398 cells in the TCGA cohorts. c, d KEGG 
pathway analysis in Hep 3B and SNU 398 cells in the TCGA cohorts. GO: Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes
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Establishing and evaluating the risk signature of LD and ER 
stress‑ associated genes
A total of 1959 LD-associated genes (search formula: LD-associ-
ated liver carcinoma) and 7235 ER stress genes (search formula: 
ER stress liver carcinoma) was selected in liver cancer patient 
specimens, and 203 crossover genes were performed by LASSO 
regression analysis (Fig. 3b, c) between 250 LD-associated genes 
and 937 ER stress genes from the TCGA database (Fig. 3a). Subse-
quently, 10 genes were identified, namely: stanniocalcin 2 (STC2), 
secreted phosphoprotein 1 (SPP1), proteasome 26S subunit, 
non-ATPase 1 (PSMD1), peroxiredoxin 1 (PRDX1), lysophos-
phatidylcholine acyltransferase 1 (LPCAT1), karyopherin subu-
nit alpha 2 (KPNA2), heparin binding growth factor (HDGF), 
glucose-6-phosphate dehydrogenase (G6PD), dynein cytoplas-
mic 1 light intermediate chain 1 (DYNC1LI1), beta-1,3-glucu-
ronyltransferase 3 (B3GAT3). Risk score (TCGA) = (0.3901)* 

B3GAT3 + (0.1809)* DYNC1LI1 + (-0.0227)* G6PD + (0.3367)* 
HDGF + (0.1425)* KPNA2 + (0.0557)* LPCAT1 + (0.1757)* 
PRDX1 + (0.161)* PSMD1 + (0.0263)* SPP1 + (0.0725)* 
STC2; AIC (ICGC) = 414.2736; risk score (ICGC) = (0.066)* 
B3GAT3 + (-0.7061)* DYNC1LI1 + ( 0.0469)* G6PD + (0.1462)* 
HDGF + (0.8041)* KPNA2 + (0.1403)* LPCAT1 + (-0.1)* 
PRDX1 + (0.2207)* PSMD1 + (0.0254)* SPP1 + (0.0245)* STC2 
(Fig. 3d, e). The high-risk signatures of 10 genes in both datasets 
suggested poor prognosis (TCGA: HR 2.331, 95%CI 1.629–3.335, 
P = 3.67e-06; ICGC: HR 5.6, 95%CI 2.586–12.125, P = 1.24e-05) 
(Fig. 4a, b). The AUCs for 1-, 2-, 3-and 4-year OS in the TCGA 
dataset were 0.797, 0.716, 0.73 and 0.713, respectively. The AUCs 
for predicting 1-, 2-, 3-and 4-year OS in the ICGC data set were 
0.763, 0.753, 0.754 and 0.831, respectively (Fig. 4c, d). These repre-
sented a decrease in the ability of the TCGA dataset to predict OS, 
but an increase in the ability of the ICGC dataset to predict OS. In 

Fig. 3  Identifying prognostic genes for developing a risk model. a Intersecting genes associated with HCC OS in the TCGA and ICGC datasets. 
b LASSO coefficient profiles of the 203 genes in the TCGA data set. c Selection of the optimal parameter (lambda) in the LASSO model. d The 
distribution of the risk score and survival overview about the ten genes chosen for establishing a prognosis signature in the TCGA cohort. e The 
distribution of the risk score and survival overview about the ten genes chosen for establishing a prognosis signature in the ICGC cohort. LASSO, 
least absolute shrinkage and selection operator; HCC hepatocellular carcinoma, OS, overall survival; TCGA, The Cancer Genome Atlas; ICGC, 
International Cancer Genome Collaboratory
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addition to screening for valid genetic risk scores, the expression 
of these genes and their correlations were subsequently analyzed.

Gene alteration and protein expression of the risk 
signature
The correlation of these 10 genes in the TCGA and 
ICGC datasets was analyzed (Fig. S12a, b). Among them, 
STC2 to be expressed in a diverse variety of tissues and 
related pathways are protein metabolism and regulation 
of insulin-like growth factor (IGF) transport [39]; SPP1 is 
the cytokine to upregulate the expression of interferon-
gramma and interleukin-12, cytokine activity and extra-
cellular matrix binding [40]; PSMD1 is proteasome that 
works in a non-lysosomal pathway in an ATP/ubiquitin-
dependent process cleaves peptides [41]; PRDX1 encoded 
a protein that probably functions as an antioxidant pro-
tector in cells and might facilitate the anti-viral activity 
of CD8( +) T cells [42]; LPCAT1 encoded an enzyme that 
acts in the metabolism of phospholipids, in particular the 
transformation of lysophophatidylcholine into phosphati-
dylcholine when acyl-CoA is present [43]; PNA2 protein 

interacts with nuclear localization sequence (NLSs) of 
DNA helicases and may participate in protein nuclear 
transport [44]; HDGF encoded a protein with mitogenic 
and DNA-binding activities that possibly serves a need 
for cell proliferation and differentiation [45]; The main 
function of G6PD is the production of NADPH, which 
is a defense against oxidants and reductive biosynthetic 
reactions in key electron donor [46]; BYNC1LI1 encoded 
a protein that is involvement in intrastromal transport 
and chromosomal separation in mitosis. This protein 
could potentially in turn intermediate association with 
additional cargo molecules in order to promote trans-
port of intracellular vesicles. [47]; B3GAT3 catalyzes the 
formation of the glycosaminoglycan-protein linkages 
through glucuronide transfer reactions in the final step 
of the linkage region biosynthesis of proteoglycans [48]. 
Together, these 10 genes are involved in the progression 
of RNA binding, transport and metabolism related to 
three substances (proteins, lipids and glucose) and cell 
proliferation. The roles of these genes are consistent with 
lipid metabolism and ER stress-related functions.

Fig. 4  The prognostic value of the LD-associated and ER stress-related gene risk signature in TCGA and ICGC datasets. a, b K-M survival analyses 
of the risk signature in HCC patients. c, d The time ROC curve analyses were performed to predict 1-, 2-, 3-, and 4-year OS according to risk score 
in the TCGA and ICGC datasets. LD lipid droplet, ER endoplasmic reticulum, TCGA The Cancer Genome Atlas, ICGC International Cancer Genome 
Collaboratory
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DYNC1LI1 and KPNA2 showed the highest corre-
lation in both datasets (correlation coefficient: 0.7). 
In the online database, cBioportal, a total of 1571 
patients/samples were found to have genetic alterations 
in HCC. Gene alterations were found in 250 (15.90%) 
of the interviewed patients/samples (Fig. S12c). HDGF 
(6%) had the highest frequency of genetic alterations. 
In addition, these 7 genes had high levels of protein 
expression and were risk factors that demonstrated 
a poorer prognosis in HCC patients (Fig. S13). A risk 
score for the 10 gene signature was subsequently 
screened and identified, which was further known to be 
associated with a poorer prognosis for HCC based on 
protein expression and correlation analysis. Therefore, 
does this risk score correlate to the clinicopathologic 
characteristics for HCC? This was analyzed below.

Clinicopathological features
Clinicopathological presentation according to the risk 
score, gender, age, race, HBV/HCV, T and TNM-stage, 
and histological grading from TCGA and ICGC data-
sets. There were no differences between risk scores and 
patients’ age, gender, and race (Fig.  5a, b, c, Fig. S14a, 
b). In addition, risk scores were higher in patients with 

HBV/HBV + HCV infection than in patients without 
viral infection in the TCGA dataset (Fig. 5d).

Risk scores were higher in T-stage with deeper local 
infiltration, especially with significant differences among 
early (T1, I) and advance (T3, T4, II, IIIA, IIIC) stage. The 
stage IV had the lowest score, but was not different from 
the early stage (Fig. 5e). Unlike the results of the TCGA 
dataset, risk scores were not well differentiated among 
T-stage and stages III and IV. However, early (I and II) 
and advanced (III and IV) stages could be more clearly 
distinguished (Fig. S14c). In the TCGA dataset, this risk 
score could effectively distinguish difference among his-
tological grades except for grades 3 and 4 (Fig. 5f, S14d). 
This result suggests that this risk score can effectively 
differentiate between early- and late- stage patients and 
there are significant differences in patients with chronic 
viral infections. As we know, the treatment of HCC is still 
focused on the combination of immune drugs, so is there 
a correlation between this risk score and immune check-
points and immune cells to assist in clinical guidance?

Immune checkpoints and immune cells
Previous investigations reported that LDs has an 
important effect in the immune and inflammatory 

Fig. 5  Association between the signature and clinicopathologic features in the TCGA datasets. The association between risk score and gender (a), 
age (b), race (c), virus infection (d), TNM and T stage (e) and grade (f) of HCC patients. **** P < 0.001, *** P < 0.01, ** P < 0.05, * P ≥ 0.05. TCGA The 
Cancer Genome Atlas, HCC hepatocellular carcinoma
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response in a variety of diseases [49]. Several immune 
checkpoint genes were included in this study, such as 
cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4), programmed death 1 (PD-1) and its ligands PD-L1 
and PD-L2, TIM-3 and lymphocyte-activation gene 3 
(LAG-3). Risk scores were positively correlated with 
most immune checkpoint genes and several immune 
cells, especially TIM-3 (Fig. 6a, S15a), neutrophils, and 
macrophages (Fig. 6b). This suggested that neutrophil-
and macrophage-mediated immune or inflammatory 
responses are associated with samples from high-risk 
populations [50, 51]. Unfortunately, there was no dif-
ference in TMB expression levels between low- and 
high- risk scores (Fig.  6c), but there was a significant 
positive correlation between MSI and TMB expression 
levels in the high-risk population (Fig. 6d, e, f ). TIM-3 
expression was significantly increased in HCC tissues 

and promoted Treg cell proliferation and induced 
apoptosis of CD8 + T lymphocytes. In addition, TIM-3 
expression was significantly increased on macrophages 
in HCC tissues, and its expression was positively cor-
related with HCC stage and negatively correlated with 
patient survival [52]. Thus, TIM-3 may downregulate 
the immune response of patients to HCC and promote 
the continued the development and spread of cancer 
cells. Meanwhile, patients with high genetic risk have 
more MSI and high TMB, which seems to contradict 
the status of the immune microenvironment. In the 
ICGC data set, the levels of TMB did not reach statis-
tical differences either in distinguishing the high-risk 
and low-risk groups or in each patient (Fig. S15b, c). 
In both TCGA and ICGC databases, an analysis of 
the correlation of risk score with common immune 
checkpoints and immune cells told us that this score 

Fig. 6  Relationship between the risk signature and immune checkpoints and immune cells in the TCGA cohort (Pearson correlation analysis). a 
Correlation between the risk scores and the expression of PD-L1, CTLA-4, TIM3, LAG-3, PD-1 and PD-L2. b Correlation between the risk scores and 
the expression of B cell, CD4 + T cell, CD8 + T cell, neutrophil, macrophage and dendritic cells. Correlation between the risk score and the expression 
of TMB in each patient (c) and low- and high- groups (d). Correlation between the risk score and the expression of MSI-high in each patient (e) and 
low- and high- groups (f). **** P < 0.001, *** P < 0.01, ** P < 0.05, * P ≥ 0.05. TCGA The Cancer Genome Atlas, PD-L1/2 programmed death ligands 
1/2, CTLA-4 cytotoxic T lymphocyte-associated antigen 4, TIM-3 T cell immunoglobulin and mucin-3, LAG-3 lymphocyte-activation gene 3, PD-1 
programmed death 1
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had strongest correlation with TIM3, neutrophils, and 
macrophages, while at low and high levels, the correla-
tion of the risk score with TMB is inconsistent in both 
databases. Whether this risk score is meaningful for 
the prognostic model is discussed next.

Construction and validation of the nomogram
It is necessary to understand whether risk characteristics 
can serve as independent predictive factors for progno-
sis. In the TCGA dataset, univariate Cox analysis showed 
that OS in HCC patients showed a significant negative 
correlation with risk scores. Furthermore, T-stage, TNM-
stage, and viral infection status suggested worse OS 
(Fig. 7a). Subsequent multifactorial Cox analysis showed 
that risk scores with T stage and viral infection could be 
independent prognostic factors (Fig. 7b).

In addition, the nomogram created integrated the 
above factors to predict OS at 1, 3, and 5 years (Fig. 7c). 
The calibrated curve indicated a notable consensus that 

real time to survival in the 1-year, 3-year, and 5-year 
TCGA cohort showed good agreement with the pre-
dicted survival rate although its ability to predict OS 
diminished over time (Fig. 7d). And similar results were 
validated in the ICGC dataset (Fig. S16a, b, c, d).

Discussion
The etiopathogenesis and the progress in HCC is a multi-
factorial systematic and multistep process [53]. Due to the 
highly aggressive and heterogeneity of viral oncogenic cells, 
treatment strategies vary across geographic regions, mainly 
due to the lack of a relatively strong scientific basis [54–56]. 
In recent years, immune checkpoint inhibitors have been 
shown to be effective immune responses to eliminate tumor 
cells [57, 58]. In the near future, immune checkpoint-based 
therapies may also improve the efficacy of local and radical 
treatments for liver cancer as well as neoadjuvant therapy. In 
this process, researches to translate molecular and immune 
categories into biomarkers to guide therapy are still ongoing. 

Fig. 7  The prognostic value of the LD-associated and ER stress-related genetic risk signature in TCGA dataset. a Univariate and (b) multivariable 
analyses of 10 genes in the TCGA dataset. c The nomogram and (d) the calibration curve analyses were performed to predict 1-, 3-, and 5-year OS 
according to risk score. LD lipid droplet, ER endoplasmic reticulum, TCGA The Cancer Genome Atlas, OS overall survival
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Among them, more concrete progress has been made in 
understanding the underlying mechanisms of adiposity dis-
ease-associated HCC, with new insights into the role of the 
tumor microenvironment, particularly the immune system, 
in the pathophysiology of the disease [59]. Lipid aggregation 
is associated with ER stress, oxidative stress, mitochondrial 
defects, cholesterol efflux factors, ER autophagy, protein 
post-translational modifications and autophagy [60]. Among 
them, ER stress induces the release of pro-inflammatory fac-
tors from immune cells, while inhibiting the ability of anti-
gen delivery. ER stress function is emphasized due to stress 
signals, such as inositol-requiring enzyme 1 alpha (IRE1α) 
and protein kinase RNA like endoplasmic reticulum kinase 
(PERK), leading to the suppression of immune cells [61, 62]. 
In conclusion, lipid disorders provide a large "lipid pool" for 
the development of HCC, and specific mechanisms of aber-
rant lipid metabolism in hepatic regulation could greatly 
improve the efficiency of immunotherapy, but clinicians are 
not yet able to apply molecular profiles to guide dosing, so 
LD-related factors were summarized. Therefore, by summa-
rizing LD-related factors, it is imperative to understand the 
factors that are critical for OS.

In this study, 124 LD-associated genes were searched 
based on the available medical literature and subsequently 
differentially expressed in three genes (ANXA2, CKAP4, 
IRAK1) in the TCGA and ICGC datasets, and survival 
analysis and time-dependent ROC analysis showed the 
same survival trends and ability to predict survival prob-
abilities in both datasets, but prognostic models for 1-,3-, 
and 5-year survival was not a valid guide. Further func-
tional analysis in the TCGA dataset suggested ER stress is 
an important component and function of LD, which was 
also validated in the CRISPR/cas9 screening library. There-
fore, a 10-genes risk signature associated with LD and ER 
stress was created from the Genecards website based on 
survival and COX regression analyses and showed that 
this risk model is an independently identified factor for 
prognosis that is associated with regulation of the tumor 
immune microenvironment, specifically M2-type mac-
rophage infiltration and TIM-3 expression.

First, genes associated with LD in the literature search, 
and three genes were screened by differential gene expres-
sion and survival analysis with TCGA and ICGC datasets. 
These genes were expressed at high levels in tumor tissues, 
suggesting poor survival, but further prognostic risk mod-
eling showed that these genes were not superior in pre-
dicting survival probability. This may be explained by two 
reasons: 1. the different regions and prevalence of HCC 
patients in the two databases, as well as the different vari-
ations in life and dietary habits, prevent homogenization of 
the analysis. 2. the current molecular mechanisms of LD are 
mainly focused on metabolic diseases [63], while malignan-
cies have been studied relatively singularly [64], especially 

the specificity of lipid metabolism in HCC [65], leading to 
gene inconsistent expression and survival analyses.

Considering that this risk model from literature data 
has a strong predictive power for survival in HCC patients 
and its limitations, the functional mechanisms of these 
genetic features were further evaluated. Functional analy-
sis revealed important effects on ER stress response and 
ubiquitin-dependent ER-associated degradation (ERAD) 
actions. These findings suggest that LD-associated genes 
are closely related to the process of ER stress activation. 
ER stress is triggered when there is a mismatch between 
the ability of the ER to process proteins and its ability to 
fold proteins [66]. Acute ER stress primarily causes cellular 
damage, whereas chronically ER stress can be a hallmark of 
many diseases, even tumors [67]. It is known that ER stress 
state induced signaling and regulation can enhance tumor 
proliferation, angiogenesis, vaccine escapes and tolerance 
to radiotherapy [68]. In HCC, ER stress leads to activation 
of corresponding genes due to rapid proliferation of cancer 
cells resulting in ischemic hypoxia and oxidative stress in 
tumor tissue. Therefore, aberrant ER stress gene expres-
sion may be of prognostic value in HCC cases.

Furthermore, Hep3B and SNU398 cell screens were 
constructed by CRISPR/cas9 knockout library, and func-
tional enrichment analysis by GO and KEGG revealed 
that these genes were extremely strongly associated with 
ER stress, similar to the results of functional enrichment 
methods obtained from literature searches. CRISPR/cas9 
technology has significant promise for identifying impor-
tant genes when screening genomic functions in biologic 
processing in varied biologic models. It is already being 
used in a genome-wide context as an alternate screen 
of RNA interferences to target alterations in gene func-
tion [69]. The promise of CRISPR screens for function 
in genomics is to help researchers discover one or more 
gene functions and potentially enable their alteration, for 
example to conduct cancer research such as molecular 
mechanistic analyses and therapy explorations. CRISPR 
technology has been used in viral infections [70], genetic 
diseases [71], antibiotic resistant bacteria [72].

Risk score is often a common method for developing 
meaningful signatures. The main purpose of analyzing 
genes screened from the TCGA dataset is to understand 
whether LD and ER stress gene risk scores are of value. ER 
stress-related risk scores have been less studied, and two 
studies of glioma simultaneously illustrate that activation 
of ER stress genes has important implications on patient 
prognosis and immune status [73, 74]. Therefore, the 
results screened by comparing the two datasets may be able 
to provide some value to clinicians for decision making.

Models using risk score can accurately predict not only 
the outcome, but also distinguish between different clin-
icopathological features. Time-dependent ROC analysis 
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showed that risk characteristics performed well in pre-
dicting 1-, 3-, and 5-year survival of HCC patients in 
the TCGA dataset. Survival analysis confirmed that risk 
scores accurately predicted patient survival, and similar 
results were found in the ICGC dataset.

In the TCGA dataset, the results of clinicopathologic 
features are suggestive of HBV infection, deeper local 
infiltration, higher histologic grade, and higher risk scores 
in patients with advanced HCC. These suggestive risk 
features are usually associated with poor prognosis and 
allow accurate differentiation of varying clinicopatho-
logical features in HCC patients. Currently, despite the 
new direct-acting antiviral drug treatments now avail-
able, epigenetic dysregulation of residual risk after HCV 
infection or after cure induces alterations in the host 
cell transcriptome [75] and direct carcinogenesis of viral 
infection [76], as well as on the accumulation of hepato-
cytes in the inflammatory process and the generation of 
inflammatory oxygen species [76], leading to a process 
that displays dysregulation via HCV infection, called can-
cer marker [76]. However, there was no difference in risk 
scores between HCV infection and those without viral 
infection, contrary to previous studies [77]. A possible 
explanation is that HCV-infected patients have a rela-
tively small sample size and do not show a trend of poor 
prognosis. In addition, stage IV patients had the lowest 
risk scores because only five stage IV patients were avail-
able in the TCGA dataset, which would not better explain 
the full characteristics.

Immunological and inflammatory reactions together 
with biological processes of biological synthesis and 
biodegradation were enclosed in the higher risk group. 
High expression of TIM-3 in tumor immune checkpoints 
and M2-type macrophages was more pronounced in the 
high-risk group compared to the low-risk score. TIM-3 
plays an immunosuppressive role in the immune micro-
environment, not only inducing depletion of CD8 + T 
cells [78], but also promoting activation of Treg cell [79] 
and massive proliferation of MDSCs [80], implying that 
LDs upregulation may inhibit the antitumor immune 
response in HCC. Furthermore, consider that immune 
cell infiltrates are an essential element of the immunolog-
ical microenvironment [81], further studies investigated 
the relationship between risk scores and immunocells, 
like macrophages, dendritic cells, B cells, CD4 + and 
CD8 + T cells, and neutrophils. This suggests that lipid 
aggregation and activation of ER stress can regulate 
changes in the immune microenvironment by affecting 
patient prognosis.

To exploit the full potential of the risks model, a nomo-
gram was prepared to combine risk characteristics, age, 
sex, race, histological class, T and TNM stage. The calibra-
tion curves based on the TCGA dataset demonstrated good 

predictive performance. Thus, the established LD-associ-
ated and ER stress gene risk signature can predict 1-, 3-, and 
5- OS probabilities for individualized treatment strategies.

The comparison and novelty of this paper with the cur-
rent studies is reflected in three aspects. Firstly, previous 
studies [82] showed the analysis of prognostic character-
istics of lipid-related genes in the TCGA database for pan-
creatic cancer in literature searches and found that some 
genetic mutations were prompt for worse prognosis. In 
this paper, we used a similar method and conducted the 
prognostic analysis of lipid-related genes using the TCGA 
database and the ICGC database as a training cohort and 
a validation cohort, respectively. Unfortunately, nega-
tive results were obtained in this paper. This shows the 
need for validation of the results obtained by database 
analysis. Secondly few studies [73, 74] have shown that 
activation of ER stress genes has an important impact 
on the prognosis and immune status of cancer patients, 
and this paper combines both ER stress and LDs through 
functional analysis of public databases, which is less com-
mon in previous studies. This combined approach accu-
rately refined the study direction and optimized the study 
population. Finally, our institute [38] constructed an 
HCC knockout library by CRISPR/cas9 technology, and 
this paper verified the strong association between LDs 
and ER stress, which was rare in previous CRISPR/cas9-
related publications [69, 70, 72] and increased the scope 
of CRISPR/cas9 utilization.

The important strengths include the association of LD 
and ER stress, and for the first time in HCC, common 
genes associated with LD and ER stress have been ana-
lyzed and a 10-gene risk model has been developed that 
can effectively predict prognostic and biological charac-
teristics. Moreover, this paper validated ER stress as the 
strongest correlate of LDs by CRISPR/cas9 technology 
in HCC cell lines. In addition, it was found that the cur-
rently available literature supported LD-related genes 
do not establish consistent prognostic features in TCGA 
and ICGC databases. However, our study has a number 
of limitations. This risk model was not screened at this 
step due to too few genes were obtained by multifacto-
rial COX regression analysis. Although the results were 
similar in distinguishing survival differences, clinico-
pathological features and immunological events in both 
datasets, the accuracy of such risk model in other data-
sets remains to be investigated.

Conclusion
In the present study, the prognosis of HCC patients was 
assessed by risk scores for LD-related and ER stress genes 
constructed by functional analysis to determine the sig-
nificance of ER stress on lipid function, despite the failure 



Page 15 of 17Guo and Liang ﻿Lipids in Health and Disease          (2022) 21:146 	

of genetic risk models obtained from the existing litera-
ture. This risk model suggested that high risk scores were 
related to worse prognosis, closely related to M2 mac-
rophage and TIM-3 expression. Thus, these provide a 
certain molecular basis for the prognostic prediction and 
biological characterization of HCC patients, and add a 
valuable reference direction for molecular studies. Espe-
cially in patients with lipid-associated HCC, this risk score 
can be a more effective and visual indication of the prog-
nostic impact. we can design appropriate targeted drugs.
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