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Abstract 

Background  The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory 
syndrome-coronavirus 2 (SARS-CoV-2) and the Omicron variant presents a formidable challenge for control and pre-
vention worldwide, especially for low- and middle-income countries (LMICs). Hence, taking Kazakhstan and Pakistan 
as examples, this study aims to explore COVID-19 transmission with the Omicron variant at different contact, quaran-
tine and test rates.

Methods  A disease dynamic model was applied, the population was segmented, and three time stages for Omicron 
transmission were established: the initial outbreak, a period of stabilization, and a second outbreak. The impact of 
population contact, quarantine and testing on the disease are analyzed in five scenarios to analysis their impacts on 
the disease. Four statistical metrics are employed to quantify the model’s performance, including the correlation coef-
ficient (CC), normalized absolute error, normalized root mean square error and distance between indices of simulation 
and observation (DISO).

Results  Our model has high performance in simulating COVID-19 transmission in Kazakhstan and Pakistan with high 
CC values greater than 0.9 and DISO values less than 0.5. Compared with the present measures (baseline), decreasing 
(increasing) the contact rates or increasing (decreasing) the quarantined rates can reduce (increase) the peak values 
of daily new cases and forward (delay) the peak value times (decreasing 842 and forward 2 days for Kazakhstan). The 
impact of the test rates on the disease are weak. When the start time of stage II is 6 days, the daily new cases are more 
than 8 and 5 times the rate for Kazakhstan and Pakistan, respectively (29,573 vs. 3259; 7398 vs. 1108). The impact of 
the start times of stage III on the disease are contradictory to those of stage II.

Conclusions  For the two LMICs, Kazakhstan and Pakistan, stronger control and prevention measures can be more 
effective in combating COVID-19. Therefore, to reduce Omicron transmission, strict management of population move-
ment should be employed. Moreover, the timely application of these strategies also plays a key role in disease control.
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Background
The coronavirus disease 2019 (COVID-19) caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has rapidly spread worldwide over the past 
3 years, with more than 623 million total confirmed cases 
and more than 6 million deaths (https://​www.​who.​int/​
emerg​encies/​disea​ses/​novel-​coron​avirus-​2019). As is 
well known, all viruses, including SARS-CoV-2, mutate 
over time, and the resulting variants may differ as to 
how easily the virus spreads and how severe the disease 
will be. In the end, SARS-CoV-2 variants may result in 
a decrease or loss of vaccine effectiveness and necessi-
tate changes in public health and social policy measures 
[1–4].

The first four SARS-CoV-2 variants of concern were 
discovered in settings with high infection pressure before 
vaccines were available. The Alpha variant of concern 
(B.1.1.7) was detected in September 2020 in the United 
Kingdom, Beta (B.1.351) in May 2020 in South Africa, 
Gamma (P.1) in November 2020 in Brazil and Delta 
(B.1.617.2) in October 2020 in India [5] (https://​www.​
who.​int/​en/​activ​ities/​track​ing-​SARS-​CoV-2-​varia​nts). 
On 26 November 2021, the World Health Organiza-
tions Technical Advisory Group on SARS-CoV-2 Virus 
Origin assigned Phylogenetic Assignment of Named 
Global Outbreak (PANGO) lineage B.1.1.529 as a vari-
ant of concern and gave it the Greek letter Omicron [6]. 
Rapid transmission of the SARS-CoV-2 Omicron vari-
ant has led to record-breaking incidence rates around 
the world and may portend large COVID-19 waves [4]. 
Since the first Omicron case was detected in Norway on 
30 November 2021, it has been continuously observed in 
many countries, such as South Africa on 15 November 
2021 [7, 8], the United States on 1 December 2021 and 
England in January 2022 [9, 10]. As of 20 January 2022, 
the Omicron variant had been discovered in 171 nations 
throughout the world, and it may spread faster than other 
variants due to its mutations [9].

In general, disease dynamic models constructed by 
ordinary differential equations or partial differential 
equations have a high ability to describe transmission 
features and forecast future changes. Therefore, nearly 
3 years into the pandemic, exploring the transmission 
characteristics and predicting the future COVID-19 vari-
ants have received increasing attention with the use of 
mathematical models, such as disease dynamic models 
[11–15].

Disease dynamic models are essentially based on the 
disease transmission mechanism using mathemati-
cal equations (e.g., ordinary differential equations and 
partial differential equations), which have been widely 
employed to investigate how disease spreads [16–18]. In 
the less than 3 years of the COVID-19 pandemic, disease 

dynamic models have been applied to explore global and 
regional disease transmission features [11, 13, 15, 19].

Other studies have investigated the spread character-
istics of COVID-19 using time series analysis models 
[20–22]. For example, with the advantages of COVID-
19 data (e.g., hospital and vaccination data), Coccia [22] 
employed some simple and important statistical mod-
els to investigate the comparative analysis of the tem-
poral dynamics and effects of the COVID-19 pandemic 
between 2020 and 2021 in Italy with different control 
measures. The results suggest that the COVID-19 pan-
demic is driven by seasonality and environmental factors 
that reduce negative effects in the summer, regardless of 
control measures and/or vaccination campaigns. Con-
sidering the microscopic social interactions among indi-
viduals, an exposure-risk-based model is developed to 
forecast the transmission trends of infectious respiratory 
diseases (e.g., COVID-19) [21].

In this study, we focus on the forecast variations of 
SARS-CoV-2 Omicron in two LMICs. Kazakhstan and 
Pakistan were chosen because they share borders with 
China and could cause problems for China if they are 
unable to prevent and control the disease. The widely 
used disease dynamic model constructed by ordinary dif-
ferential equations will be employed to improve the accu-
racy of predicting future changes in COVID-19.

Methods
Study area and a brief analysis of COVID‑19
Kazakhstan and Pakistan have close relationships with 
the Xinjiang Autonomous Region, China, in the Silk Belt 
and along the Silk Road. Kazakhstan has seven ports, 
including Ahertu Buick, Baktu Jeminay, Alashankou, 
Horgos, Dulata and Muzart. Pakistan has one, the Khu-
nierab port. In 2020, the total population of Xinjiang, 
Kazakhstan and Pakistan was 25.89 million, 18.78 million 
and 220.89 million, respectively, according to the United 
Nations Statistics Division (data.un.org) and the National 
Bureau of Statistics of China (http://​www.​stats.​gov.​cn/).

Among the Central and South Asian countries, 
Kazakhstan and Pakistan play a great role in international 
trade, as shown in Additional file 1: Fig. S1. From 2000 to 
2021, there were significant increases in the total import 
and export volumes of USD1.09 billion per year for 
China-Kazakhstan and $1.14 billion per year for China-
Pakistan. In the 1st full year of the COVID-19 pandemic 
in 2020, the total import and export volume between 
China and Kazakhstan decreased by $494.54 million 
compared to 2019, and it decreased by $490.51 million 
for Pakistan. With the effective prevention and control of 
COVID-19, total imports, and exports for the two coun-
tries are trending up again.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
http://www.stats.gov.cn/
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In Kazakhstan, the first cases of COVID-19 were 
reported on March 13, 2020, and the first cases of the 
Omicron strain were detected on January 6, 2022. Dur-
ing the pandemic, the largest number of new cases in a 
day was 16,442 on January 21, 2022 (Additional file 1: Fig. 
S2a), and the cumulative confirmed cases total more than 
1.4 million (Additional file  1: Fig. S2b). To prevent the 
spread of the disease, a state of emergency was declared 
and numerous nonpharmaceutical interventions (NPIs) 
(e.g., limiting public gatherings, physical distancing, 
lockdown, and quarantine) and universal mass vaccina-
tion was required. With dynamic control and prevention 
measurements in place, the number of COVID-19 cases 
have ebbed and flowed in multiple waves (Additional 
file 1: Fig. S2a).

In Pakistan, since the first case was reported on Feb-
ruary 26, 2020, there have been at least five waves of 
COVID-19 with new cases peaking at more than 3000 
a day. A rapid increase in COVID-19 was observed fol-
lowing the first reported case of the Omicron variant on 
December 9, 2021, a faster spread than the other four 
variants (i.e., Alpha, Beta, Gamma and Delta), which 
resulted in the largest number of cases in a day, 8183 on 
January 29, 2022 (Additional file 1: Fig. S3a). The cumula-
tive confirmed cases stood at more than 1.5 million on 
October 14, 2022 (Additional file 1: Fig. S3b). A number 
of control and prevention strategies have been employed 
to control the spread of COVID-19 in the country, 
including NPIs and COVID-19 vaccination.

The Omicron variant is highly transmissible, as seen 
in both Kazakhstan and Pakistan (Additional file 1: Figs. 
S2a, 3a). To investigate Omicron transmission character-
istics, we focused on the simulation and prediction of the 
stage of the variant’s spread for the two countries using 
the dynamic disease model. The study period was from 
January 6, 2022, to October 14, 2022. Because the NPIs 
in the two countries were determined by the variants fea-
tures, the study period is divided into three stages: stage 
I from January 6 to March 17, stage II from March 18 to 
July 17 and stage III from July 18 to October 14.

Dynamic disease model
Therefore, we also employ the dynamic disease model 
to simulate and predict the behavior of the COVID-19 
Omicron variant in Kazakhstan and Pakistan. In con-
structing the model, according to the disease spread 
and the disease datasets collected in the two countries, 
the populations were divided into five groups, encom-
passing susceptible, exposed, infectious, confirmed and 
recovered individuals. Moreover, we considered three 
major factors that affected the COVID-19 variant’s 
behavior, including contact frequency, quarantine situ-
ation and disease testing requirements, which changed 
with time. The details of the model construction are 
provided in Fig. 1.

From the above analysis and the flowchart of COVID-
19 transmission in the two countries, the disease 
dynamic model is constructed as follows.
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Fig. 1  Flowchart of the COVID-19 dynamic model of Kazakhstan and Pakistan
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To quantify the model’s simulation and prediction per-
formance, the correlation coefficient (CC), absolute error 
(AE) and root mean square error (RMSE) are employed. 
The overall performance is evaluated by the distance 
between indices of simulation and observation (DISO), 
which is based on the Euclidean distance and flexible 
determination of statistical metrics and their numbers 
from the Da Dao Zhi Jian concept [24–26]. The DISO 
equation is provided as follows.

where NAE and NRMSE are normalized by the averaged 
values of the observed time series.

Results
In this section, we first simulate and predict the COVID-
19 variations in both countries using model (3.1). Then, 
the scenario analysis results of different contact rates, 
quarantine rates and test rates in four scenarios are 
provided, including the scenarios about decreasing (or 
increasing) the NPIs when compared with the base-
line (the present situation). Moreover, we only adjusted 
the start time points (i.e., t0 and t1) of stage II and stage 
III and kept the same NPIs and vaccines as the present 
situation to illustrate the impact of NPIs and vaccines 
employed at different time points on disease transmis-
sion. All the analyses focus on the daily new confirmed 
cases and cumulative confirmed cases. The following are 
the specific results (Table 1).

Simulation and prediction analysis of COVID‑19
The study period includes the simulation period from 
January 6, 2022, to September 25, 2022, and the predic-
tion period from September 26, 2022, to October 14, 
2022. The simulation and prediction results for the two 
countries are displayed in Figs. 2 and 3.

Our model (3.1) captures the historical COVID-19 
transmissions in the two countries well (Figs.  2, 3). The 
CC values are larger than 0.90 for cumulative confirmed 
cases. Most NAE values are zero, NRMSE values are 
smaller than 2 and DISO values are smaller than 0.5, 
which indicates that the dynamic disease model (3.1) has 
a very comprehensive performance in simulating and 
predicting the daily new confirmed cases and cumulative 
confirmed cases (Table 2).
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Scenario analysis of COVID‑19
COVID‑19 variations at different contact rates
To investigate the impact of the different contact rates 
on COVID-19 transmission from the perspective of daily 
new confirmed cases, we set four scenarios: 0.8c3, 0.9c3, 
1.1c3 and 1.2c3, which were used in comparisons with 
the baseline (c3).The smaller contact rates are shown to 
reduce the peak values of the daily new confirmed cases 
and increase the corresponding time points, and larger 
contract rates resulted in larger peak values and delayed 
corresponding time points for both countries (Fig.  4). 
For example, when the contact rate was decreased to 
0.8c3, the peak values were 2714 for Kazakhstan and 831 
for Pakistan with the corresponding time points of July 
27, 2022 and July 6, 2022; when the contact rate was 
increased to 1.2c3, the peak values were 4111 for Kazakh-
stan and 1744 for Pakistan with the corresponding 
time points of August 1, 2022 and July 20, 2022 (Fig.  4, 
Table  3). For baseline c3, the peak values of Kazakhstan 
and Pakistan are 3259 and 1108, respectively, with corre-
sponding time points of July 29, 2022, and July 11, 2022.

COVID‑19 variations at different quarantine rates
For the different quarantine rates, the four scenario val-
ues were 0.8q3, 0.9q3, 1.1q3 and 1.2q3, and the baseline 
was (q3). The smaller quarantine rates in controlling dis-
ease transmission suggest that the peak value of daily 
new confirmed cases will become larger and the corre-
sponding time points will be delayed compared with the 
baseline condition (Fig. 5). In contrast, stronger quaran-
tine measures meant smaller peak values and forward 
time points for both countries. In particular, when the 
quarantine rate was 0.8q3, the peak values were 3389 
for Kazakhstan and 1365 for Pakistan, with correspond-
ing time points of July 31, 2022, and July 22, 2022; when 
the quarantine rate was 1.2q3, the peak values were 3197 
for Kazakhstan and 1017 for Pakistan, with correspond-
ing time points of July 28, 2022, and July 8, 2022 (Fig. 5, 
Table 4). For the baseline q3, the peak values of Kazakh-
stan and Pakistan were 3259 and 1108, respectively, with 
corresponding time points of July 29, 2022, and July 11, 
2022.

COVID‑19 variations at different detection rates
The impact of detection rates on disease transmission are 
provided in Fig. 6 with four scenarios of 0.8τ3, 0.9τ3, 1.1τ3 
and 1.2τ3. Small detection rates indicate weak disease 
screening ability, and large detection rates suggest strong 
disease screening ability.

Small differences existed after changing the detection 
rates for the daily new confirmed cases in both coun-
tries, which may have been caused by their weak primary 
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detection abilities. At the baseline τ3, the peak values and 
the corresponding time points of Kazakhstan and Paki-
stan were the same as the baselines of c3 and q3.

COVID‑19 variations at different start times of stage II
Keeping the same control and prevention measures, we 
only changed the start time for different stages with a 
time interval of 3 days because of the incubation period 
of the Omicron variant. The start times for stage II were 
set as March 12, March 15, March 21, and March 24 and 
compared with the baseline of March 18 for Kazakhstan; 

April 23, April 26, May 2 and May 5 were compared with 
the baseline of April 29 for Pakistan (Fig. 7). Combined 
with the contact rates and quarantine rates at stage II, 
when the start time was brought forward, it had the for-
ward maximum contact rate and the forward minimum 
quarantine rate, which would cause more infection than 
the baseline condition. When the start time was delayed, 
it had a delayed maximum contact rate and a delayed 
minimum quarantine rate, which would cause fewer 
infections. For example, when the start times were March 
12 and April 23 for Kazakhstan and Pakistan, the peak 

Table 1  Parameter estimates for the COVID-19 epidemic in Kazakhstan and Pakistan

The prime (,) denotes the differentiation with respect to time t

S susceptible; Sq quarantined susceptible; E exposed; Q quarantined suspected; I infected; C confirmed; R recovered

Parameter Definitions Estimated values Source

Kazakhstan Pakistan

β Probability of transmission per contact 0.089 0.0713 Estimated

µ Release rate of quarantined uninfected contact 1/14 1/14 [19]

c0 Contact rate at the initial time 20.3 23.9 Estimate

c1(c3) Minimum contact rate in stage I (III) 6.8(19.1) 12(9) Estimated

c2 Maximum contact rate in stage II 16.5 18.3 Estimated

rc1
(

rc2 , r
c
3

)

Exponential rate of contact rate under stage I (II, III) 0.01(0.02, 0.2) 0.08(0.04,0.25) Estimated

q0 Quarantined rate of exposed individuals at the initial time 0.009 0.005 Estimated

q1(q3) Maximum quarantined rate of exposed individuals in stage I (III) 0.8(0.62) 0.5(0.6) Estimated

q2 Minimum quarantined rate of exposed individuals in stage II 0.2 0.25 Estimated

r
q
1

(

r
q
2 , r

q
3

)

Exponential rate of quarantined rate of exposed individuals under stage I (II, III) 0.08(0.01,0.04) 0.05(0.04,0.1) Estimated

b Detection rate of the quarantined suspected class 0.2 0.2 Estimated

P Transition rate of quarantined suspected class to the confirmed class 0.9 0.9 Estimated

δ Transition rate of exposed individuals to the infected class 1/3.42 1/3.42 [23]

τ0 Initial diagnosis rate at initial time 0.0214 0.07 Estimated

τ1(τ3) Fastest diagnosis rate in stage I (III) 0.8(0.43) 0.6(0.3) Estimated

τ2 Fastest diagnosis rate in stage II 0.1 0.12 Estimated

rτ1
(

rτ2 , r
τ
3

)

Exponential rate of diagnosis rate in stage I (II, III) 0.2(0.1,0.1) 0.2(0.09,0.001) Estimated

γI Recovery rate of infected individuals 0.28 0.228 Estimated

dI Disease-induced death rate of infected individuals 0.00002 0.00005 Estimated

γC Recovery rate of confirmed individuals 0.08 0.06 Estimated

dC Disease-induced death rate of confirmed individuals 0.000145 0.000366 Estimated

t0(t1) The starting time of stage II(III) 71(193) 113(170) Data

Initial values Definitions Estimated value Source

Kazakhstan Pakistan

N (0) Initial total population 1.9 × 107 2.21 × 108 Data

S(0) Initial susceptible population 1.792 × 107 2.197 × 108 Estimated

E(0) Initial exposed population 2750 1950 Estimated

I(0) Initial infected population 1220 1120 Estimated

Sq(0) Initial quarantined susceptible population 4976 10,707 Estimated

Q(0) Initial quarantined suspected population 420 180 Estimated

C(0) Initial confirmed population 94,945 6521 Data

R(o) Initial recovered population 961,806 1.263 × 106 Data
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Fig. 2  Simulation and prediction of daily new confirmed cases (a) and cumulative confirmed cases (b) Kazakhstan

Fig. 3  Simulation and prediction of daily new confirmed cases (a) and cumulative confirmed cases (b) for Pakistan

Table 2  Evaluation results of the simulation and prediction of daily new confirmed cases and cumulative confirmed cases for 
Kazakhstan and Pakistan

CC correlation coefficient; DISO distance between indices of simulation and observation; AE absolute error; RMSE rote mean square error

Country Case Time period CC NAE NRMSE DISO

Kazakhstan Daily new 01.06–09.25 0.92 0.00 0.91 0.43

09.26–10.14 0.35 -0.97 1.04 0.49

Cumulative 01.06–09.25 0.99 0.00 0.01 0.33

09.26–10.14 0.98 0.00 0.00 0.33

Pakistan Daily new 01.06–09.25 0.98 0.00 0.42 0.36

09.26–10.14 0.32 -0.14 1.39 0.48

Cumulative 01.06–09.25 1.00 0.00 0.00 0.33

09.26–10.14 0.97 0.00 0.00 0.32
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values of daily new confirmed cases were 29,573 and 
7398 for the two countries, which were more than 8 and 
5 times those at the baselines. When the start times were 
March 24 and May 5 for Kazakhstan and Pakistan, the 
peak values of daily new confirmed cases were 277 and 
168 for the two countries, respectively, which were fewer 
than those at the baselines (Fig. 7, Table 5).

COVID‑19 variations at different start times of stage III
The start times of stage III were set as July 12, July 15, July 
21, and July 24 compared with the baseline of July 18 for 
Kazakhstan and June 19, June 22, June 28 and June 1 com-
pared with the baseline of June 25 for Pakistan (Fig.  8). 
Combined with the contact rates and quarantined rates 
at stage II, when the start time was brought forward, it 

Fig. 4  Scenario results of the different contact rates for daily new COVID-19 cases in Kazakhstan (a) and Pakistan (b)

Table 3  Scenario results of the different contact rates c3 for 
Kazakhstan and Pakistan, where peak value is the daily new 
confirmed cases

Country Scenarios Peak value Time point

Kazakhstan 0.8c3 2417 2022.07.27

0.9c3 2957 2022.07.28

c3 3259 2022.07.29

1.1c3 3635 2022.07.31

1.2c3 4111 2022.08.01

Pakistan 0.8c3 831 2022.07.06

0.9c3 944 2022.07.08

c3 1108 2022.07.11

1.1c3 1355 2022.07.15

1.2c3 1744 2022.07.20

Fig. 5  Scenario results of the different quarantine rates for daily new COVID-19 cases in Kazakhstan (a) and Pakistan (b)
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had the forward minimum contact rate and the forward 
maximum quarantined rate, which would cause fewer 
infections than the baseline condition. When the start 
time was delayed, it had a delayed minimum contact rate 
and a delayed maximum quarantine rate, which would 
cause more infection. For example, when the start times 
were July 12 and June 19 for Kazakhstan and Pakistan, 
the peak values of daily new confirmed cases were 1276 
and 341 for the two countries, respectively, which were 
fewer than those at the baselines. When the start times 
were July 24 and July 1 for Kazakhstan and Pakistan, the 
peak values of daily new confirmed cases were 8267 and 
3670 for the two countries with time points of August 4, 
2022, and July 17, 2022, respectively, which were more 

Table 4  Scenario results of the different quarantine rates q3 for 
Kazakhstan and Pakistan

Country Scenario Peak value Time

Kazakhstan 0.8q3 3389 2022.07.31

0.9q3 3317 2022.07.30

q3 3259 2022.07.29

1.1q3 3215 2022.07.29

1.2q3 3179 2022.07.28

Pakistan 0.8q3 1365 2022.07.22

0.9q3 1193 2022.07.14

q3 1108 2022.07.11

1.1q3 1055 2022.07.09

1.2q3 1017 2022.07.08

Fig. 6  Scenario results of the different detection rates for daily new COVID-19 cases in Kazakhstan (a) and Pakistan (b)

Fig. 7  Scenario results of the different start times of stage II for daily new COVID-19 cases in Kazakhstan (a) and Pakistan (b)
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than those at the base lines and the delayed time points 
(Fig. 8, Table 6)

Discussion
The ongoing COVID-19 pandemic is still having a great 
impact on lives and livelihoods worldwide, and its con-
trol and prevention face huge challenges because SARS-
CoV-2 will continue to evolve and attempt to evade 
immunity. Each new variant has demonstrated this in 
waves. Therefore, timely, accurate, and comprehensive 
estimates of the daily new confirmed cases and cumula-
tive confirmed cases are essential for understanding the 
determinants of past infection, current transmission pat-
terns, and future infection variations. For the control and 
prevention of COVID-19, NPIs rely on reducing contact 
between infected and susceptible individuals through 
mass social distancing, including restrictions on social 

gatherings, stay-at-home orders, lockdowns, closures of 
schools and business, travel restrictions, increased test-
ing, active monitoring, contact tracing, and other isola-
tion measures [27–31]. NPIs, especially lockdowns, can 
effectively reduce the reproduction of COVID-19 cases 
[32–35]. For the NPIs of Kazakhstan and Pakistan, we 
chose the contact rate, quarantine rate, and test rate to 
explore their impact on disease transmission. The results 
suggest that reducing the contact rates or increasing the 
quarantine rates can largely decrease the daily new con-
firmed cases, which is consistent with previous studies 
[29, 30, 32]. However, an increase in the test rate has a 
weak impact on disease transmission, which may be 
caused by the strong quarantine measures.

Almost 3 years into the pandemic, several COVID-19 
vaccines have received emergency use listing or authori-
zation by regulatory authorities and the World Health 

Table 5  Scenario results of the different start times t0 for 
Kazakhstan and Pakistan, where t0 − n means before n days of t0, 
and t0 + n means after n days of t0, n = 3, 6

Country Scenario Peak value Time point

Kazakhstan t0 − 6 29,573 2022.07.27

t0 − 3 10,608 2022.07.29

t0 3259 2022.07.29

t0 + 3 954 2022.07.29

t0 − 6 277 2022.07.29

Pakistan t0 − 6 7398 2022.07.11

t0 − 3 2862 2022.07.11

t0 1108 2022.07.11

t0 + 3 431 2022.07.11

t0 + 6 168 2022.07.11

Fig. 8  Scenario results of the different start times of stage III for daily new COVID-19 cases in Kazakhstan (a) and Pakistan (b)

Table 6  Scenario results of the different start times t1 for 
Kazakhstan and Pakistan

Country Scenario Peak value Time point

Kazakhstan t1 − 6 1276 2022.07.23

t1 − 3 2037 2022.07.26

t1 3259 2022.07.29

t1 + 3 5207 2022.08.01

t1 − 6 8267 2022.08.04

Pakistan t1 − 6 341 2022.07.22

t1 − 3 613 2022.07.14

t1 1108 2022.07.11

t1 + 3 2013 2022.07.09

t1 + 6 3670 2022.07.08
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Organization based on the vaccine efficacy results from 
randomized controlled trials [36–39]. There is a realistic 
expectation that the global effort in vaccination will bring 
the pandemic caused by SARS-CoV-2 under control [15, 
40]. COVID-19 vaccines combined with NPIs are very 
effective in reducing disease transmission, the risks of 
severe disease and mortality from the Omicron variant 
[6, 41, 42]. For Kazakhstan and Pakistan, the vaccination 
rates are mainly dependent on their low developed econ-
omies, which are lower than those of highly developed 
countries. Moreover, it is very difficult to obtain specific 
vaccination data about the two countries. Therefore, we 
will explore the impact of COVID-19 vaccines on disease 
transmission when data are available in the future.

For any disease, prevention plays a very important role 
in protecting human health, which demands the estab-
lishment of a new disease warning system with com-
prehensive early warning information about diseases. 
In recent years, health concepts composed of the envi-
ronment and human and wild animal health have been 
proposed and widely developed in the control and pre-
vention of human diseases, especially zoonoses [23, 43, 
44]. Compared with the traditional disease warning sys-
tem, the “one health model” claims to detect and moni-
tor early warning information related to diseases, such as 
environmental factors (e.g., land use and land cover, tem-
perature, precipitation and wind) and wild animal fac-
tors (e.g., wild animal population, density and behaviors) 
[45, 46]. COVID-19 is also a zoonosis that may correlate 
with climate factors and wild animals [45, 47]. Hence, 
the one-health COVID-19 model with climate factors 
and wild animal factors should be considered to pro-
vide more early warning information and reduce disease 
transmission.

For the forecasting of COVID-19 transmissions, in 
addition to the widely used dynamic models using ordi-
nary differential equations, there are some other mod-
els considering the factor impacts on the transmission 
mechanism [21, 48, 49]. For example, an exposure risk-
based model was established to explore COVID-19 trans-
mission characteristics [21]. A moving averages model 
(MM7) has been used to detect the health policy of full 
lockdowns and a vast campaign of vaccinations [22]. 
However, these studies generally need more datasets to 
better explain the disease transmission mechanism, such 
as vaccination data and hospitalization data [22].

Our results indicate that model (2.1) has a good abil-
ity to capture the COVID-19 variations in the two coun-
tries with high CC values and very small DISO values. 
However, there are still some differences between our 
predicted data and the real-world data from September 
26, 2022, to October 14, 2022. For example, prediction of 
the daily new data is different from the real-world data 

with low CC values, which may be caused by the short 
time period compared to the more than nine months in 
the simulated period (Table  2). If more datasets about 
COVID-19 in Kazakhstan and Pakistan become available, 
a comprehensive analysis will be provided in our future 
study. Now, we have to use the limited data to investigate 
COVID-19 transmission and predict the future tenden-
cies using the dynamic model.

Some limitations exist in our study. For example, 
model (2.1) can be improved from the aspects of social 
distance, vaccination and mask use in the two countries. 
Moreover, some important parameters are estimated in 
our study, such as the contact rate and recovery rate of 
confirmed cases of COVID-19. More information about 
these aspects of disease transmission in the two countries 
is needed and can help establish a more accurate model.

Conclusions
In this study, the dynamic variations in COVID-19 trans-
mission with the omicron variant in Kazakhstan and 
Pakistan are explored with a dynamic disease model 
(2.1) derived by differential equations. First, the simula-
tion and prediction of the disease are analyzed. Then, the 
impact of contact, quarantine and test rates are analyzed 
based on five different scenarios. Moreover, we explore 
the scenario results of COVID-19 variations with the 
control and prediction measurements at different time 
points. The main results are concluded as follows.

(1)	 The dynamic model established by ordinary differ-
ential equations has high performance in simulat-
ing and predicting COVID-19 transmission in the 
two countries, including multiple wave variations. 
The simulation CC values of the daily new con-
firmed cases and the cumulative confirmed cases 
are higher than 0.9, and the DISO values are smaller 
than 0.5.

(2)	 According to the scenario analysis of different con-
tact rates and quarantine rates, disease transmis-
sion can be reduced by decreasing the contact rates 
and increasing the quarantine rates. In fact, the 
increased contact rates indicate decreased quaran-
tine rates. The reduced contact rates largely indicate 
stronger quarantine measures.

(3)	 Moreover, with these same magnitudes, the timely 
application of control and prevention strategies 
plays a key role in disease transmission based on the 
different start time points of Stage II and Stage III.

To fight against the COVID-19 pandemic, vaccines 
have been extensively deployed across most large coun-
tries in the world. Constrained by the vaccine datasets of 
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Kazakhstan and Pakistan, the impact of the vaccine is not 
considered in our model. In the future, population move-
ments and vaccines will be included in our model if these 
data become available.
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