
Zhang et al. Infectious Diseases of Poverty           (2023) 12:11  
https://doi.org/10.1186/s40249-023-01061-8

RESEARCH ARTICLE

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Infectious Diseases of Poverty

Assessing the impact of COVID‑19 
interventions on influenza‑like illness in Beijing 
and Hong Kong: an observational and modeling 
study
Xingxing Zhang1, Jing Du2, Gang Li2, Teng Chen3, Jin Yang1, Jiao Yang1, Ting Zhang1, Qing Wang1, 
Liuyang Yang1,4, Shengjie Lai5*   , Luzhao Feng1* and Weizhong Yang1*    

Abstract 

Background  The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) 
on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal 
scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing 
and the Hong Kong Special Administrative Region (SAR) of China.

Methods  We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean 
temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using 
data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 
interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evalu-
ate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal 
driving factors in the above settings in 2020–2021.

Results  The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, 
with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in 
both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% con-
fidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers 
for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM 
model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and 
“Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restric-
tions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR.

Conclusions  Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence 
of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local 
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circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe 
influenza strains or other respiratory infections in future.

Keywords  Influenza-like illness, Non-pharmaceutical intervention, COVID-19, SARS-CoV-2, Influenza, China

Background
Non-pharmaceutical interventions (NPIs) during the 
coronavirus diseases 2019 (COVID-19) pandemic 
have altered not only the spread of SARS-CoV-2, but 
also the predictable circulation patterns of many other 
infectious diseases. For instance, influenza viruses 
and human metapneumovirus have circulated at his-
toric lows through May 2021 in the United States of 
America (USA) [1]. There was no typical winter surge 
in hospitalizations related to respiratory syncytial virus 
among children in 2020 [2]. While respiratory infec-
tious diseases were likely to be the most affected, infec-
tious diseases with other transmission modes, such as 
gastrointestinal, sexually transmitted, or even vector-
borne diseases, may have also been impacted [3]. An 
example of this is the dramatic reduction in the inci-
dence of norovirus infections in nine US states owing 
to NPIs [4]. The COVID-19 pandemic and its related 
NPIs have led to a departure from seasonal disease 
circulation patterns, and in many locations, the usual 
circulation of these viruses was absent for more than a 
year, only to resurge in unexpected ways [5].

Many studies have focused on the impact of NPIs 
during the COVID-19 pandemic on seasonal influenza 
worldwide. Reportedly, during the 2019–2020 season, 
the activity of influenza was largely reduced in both 
northern and southern China and the USA [6]. Simi-
larly, significantly lower influenza activity was noted 
with no seasonal influenza outbreaks observed in the 
Southern Hemisphere in 2020 [7]. Additionally, some 
studies suggest some international travel-related, per-
sonal protective and social distancing NPIs could be 
considered and reserved for pandemic influenza in the 
future [8–10]. Although there is consensus that influ-
enza activity decreased sharply after the COVID-19 
pandemic in specific countries or regions, the impact 
of each NPI on ILI remains unclear, especially at the 
municipal scale. Therefore, it is necessary to explore 
the effects of NPIs on influenza-like illness (ILI) in the 
presence of other known seasonal driving factors such 
as meteorological factors.

Beijing, the capital city of China, is in the temper-
ate region of northern China, whereas the Hong Kong 
SAR is in a subtropical region. Owing to the unique 
socioeconomic, climatic, and political characteristics, 
the influenza circulation pattern during the COVID-
19 pandemic in these two areas was closely observed. 

In this study, we aimed to assess the impact of NPIs on 
outpatient ILI consultations in Beijing and the Hong 
Kong SAR from 2020 to 2021 using observational and 
modeling methods.

Methods
Data collection
Influenza surveillance data
We collected weekly ILI rates (the proportion of ILI 
consultations out of all outpatient visits) in Beijing and 
the Hong Kong SAR from the 1st week of 2011 to the 
50th week of 2021. The weekly ILI rates in Beijing were 
retrieved from a sentinel surveillance system for ILI [11], 
which was designed and led by the Beijing Center for 
Disease Control and Prevention (BJCDC) and comprised 
421 sentinel hospitals. In this system, outpatient clini-
cians in internal medicine, the emergency department, 
fever clinics, and pediatric clinics were required to diag-
nose all ILI cases using the World Health Organization 
definition of ILI (patients presenting with fever ≥ 38  °C 
and cough or sore throat) and to record the number of 
ILI consultations by age group (0–4, 5–14, 15–24, 25–59, 
and 60 + years) [12]. These data were then reported daily 
to the BJCDC via an internet-based system. The weekly 
ILI rates were obtained by dividing ILI consultations by 
outpatient visits. This ILI surveillance was conducted 
throughout the year to monitor influenza virus activity in 
Beijing.

The weekly ILI rates in the Hong Kong SAR were 
obtained from the Centre for Health Protection of Hong 
Kong SAR, based on General Outpatient Clinics/Pri-
vate Medical Practitioner Clinics sentinel surveillance 
(Weekly consultation rates of influenza-like illness. 
https://​www.​chp.​gov.​hk/​en/​static/​24015.​html. Accessed 
1 August 2022.) [13, 14]. The ILI sentinel surveillance 
network comprised approximately 60 outpatient clin-
ics [15]. At the end of each week, sentinel practitioners 
reported weekly data on the rates of ILI per 1000 out-
patient consultations [16]. Age-specific ILI rates were 
not reported. The data were retrieved from Hong Kong 
Island, Kowloon, New Territories East, and New Ter-
ritories West and aggregated [17]. This ILI surveillance 
was conducted throughout the year to monitor influenza 
virus activity in the Hong Kong SAR.

In the Chinese mainland, each surveillance year com-
prises a 12-month interval; from the 14th week of one 

https://www.chp.gov.hk/en/static/24015.html
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year to the 13th week of the following year. For consist-
ency within this study, the surveillance year in the Hong 
Kong SAR was defined as the same as that in Beijing.

COVID‑19 NPIs data
We downloaded daily NPIs data from the Oxford 
COVID-19 Government Response Tracker (OxCGRT; 
Blavatnik School of Government, University of Oxford, 
United Kingdom; OxCGRT/covid-policy-tracker-leg-
acy. https://​github.​com/​OxCGRT/​covid-​policy-​track​
er-​legacy. Accessed 1 August 2022.) [18] in Beijing and 
the Hong Kong SAR from the 1st week of 2020 to the 
50th week of 2021. OxCGRT collects publicly available 
information on governments’ COVID-19 response [18]. 
Eight of the policy indicators (C1–C8) relate to contain-
ment and closure policies, such as school closures and 
restrictions on movement. Four of the indicators (E1–E4) 
concern economic policies, such as income support to 
citizens or provision of foreign aid. Eight indicators (H1–
H8) cover health system policies, such as the COVID-19 
testing regimes or emergency investments into health-
care. Three indicators (V1–V3) concern vaccination poli-
cies. Finally, a miscellaneous indicator (M1) is for notes 
that do not fit elsewhere. For each indicator, the OxCGRT 
scores used a numeric scale with higher scores signifying 
more intense or wider coverage of the interventions, and 
data are collected and updated in real-time and reported 
daily [19].

In this study, nine indicators considered likely to play 
a key role in influenza transmission based on epidemio-
logical principles and previous studies were retrieved to 
establish the COVID-19 NPI datasets (Additional file 1: 
Table S1). Given the potential collinearity between these 
NPI indicators in the modelling, we combined simi-
lar indicators (Additional file 1: Table S2) by calculating 
their mean. C1 and C2 were combined to C12 represent-
ing “closings of schools and workplaces”. C3 and C4 were 
integrated to C34 representing “cancelling public events 
or gatherings”. C5, C6 and C7 were combined to C567 
representing “restrictions on internal travel”. C1‒8 and 
H6 were averaged to “All NPIs as a whole” representing 
the overall intensity of NPIs. Daily NPI data were con-
verted to weekly averages to be consistent with the ILI 
data.

Meteorological data
Daily meteorological data, including mean temperature, 
mean dew point temperature, and other meteorological 
factors in Beijing and the Hong Kong SAR, were obtained 
from the National Centers for Environmental Infor-
mation (Global Surface Summary of the Day—GSOD. 
https://​www.​ncei.​noaa.​gov/​access/​search/​data-​search/​
global-​summa​ry-​of-​the-​day?​bbox=​53.​544,73.​620,18.​

198,134.​761&​place=​Count​ry:​194&​stati​ons=​54511​09999​
9&​pageN​um=4. Accessed 10 August 2022.) [20] for the 
1st week of 2011 to the 50th week of 2021. Temperature 
and humidity have been found to play a more important 
role in influenza transmission by previous studies [21, 
22], which were incorporated into models in the study. 
The daily saturation vapor pressure (E), daily actual vapor 
pressure (e) , daily relative humidity (RH), Kelvin temper-
ature (T), and daily absolute humidity (AH) were derived 
from Eqs.  1–5, respectively. In addition, t and td repre-
sented mean temperature and mean dew temperature 
in Eqs. 1–5, respectively. Daily meteorological data were 
also converted to weekly averages to be consistent with 
the ILI data.

Public and school holiday data
The holiday data were obtained from the WorldPop Data 
repository (Global Holiday Data. https://​hub.​world​pop.​
org/​proje​ct/​categ​ories?​id=​19. Accessed 10 August 2022.) 
[23] and a previous relevant study [24] for the 1st week of 
2011 to the 50th week of 2021. The holiday datasets were 
established as a time series to record how many days in 
each week contained public or school holidays.

Population density data
The yearly population density data of Beijing and the 
Hong Kong SAR was downloaded from the statistical 
yearbook from the portal of Beijing Municipal Bureau 
Statistics (Beijing Statistical Yearbook 2022. https://​nj.​
tjj.​beiji​ng.​gov.​cn/​nj/​main/​2022-​tjnj/​zk/​index​ch.​htm. 
Accessed 4 August 2022.) [25] and Census and Statistics 
Department of the Government of the Hong Kong SAR 
(Demographic Trends in Hong Kong 1991–2021. https://​
www.​censt​atd.​gov.​hk/​sc/​EInde​xbySu​bject.​html?​pcode=​
B1120​017&​scode=​150. Accessed 4 August 2022.) [26].

Data analysis
Descriptive analysis
We conducted descriptive analysis to present the tem-
poral distribution of the mean temperature, relative 

(1)E = 6.112exp 17.67∗t
t+243.5

(2)e = 6.112exp
(

17.67∗td
td+243.5

)

(3)RH =
e
E × 100%

(4)T = t + 273.15◦C

(5)AH = 217× e
T

https://github.com/OxCGRT/covid-policy-tracker-legacy
https://github.com/OxCGRT/covid-policy-tracker-legacy
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day?bbox=53.544,73.620,18.198,134.761&place=Country:194&stations=54511099999&pageNum=4
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day?bbox=53.544,73.620,18.198,134.761&place=Country:194&stations=54511099999&pageNum=4
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day?bbox=53.544,73.620,18.198,134.761&place=Country:194&stations=54511099999&pageNum=4
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day?bbox=53.544,73.620,18.198,134.761&place=Country:194&stations=54511099999&pageNum=4
https://hub.worldpop.org/project/categories?id=19
https://hub.worldpop.org/project/categories?id=19
https://nj.tjj.beijing.gov.cn/nj/main/2022-tjnj/zk/indexch.htm
https://nj.tjj.beijing.gov.cn/nj/main/2022-tjnj/zk/indexch.htm
https://www.censtatd.gov.hk/sc/EIndexbySubject.html?pcode=B1120017&scode=150
https://www.censtatd.gov.hk/sc/EIndexbySubject.html?pcode=B1120017&scode=150
https://www.censtatd.gov.hk/sc/EIndexbySubject.html?pcode=B1120017&scode=150
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Fig. 1  The changes of mean temperature (a), absolute humidity (b), and relative humidity (c) from 2011 to 2021 and the stringency of 9 NPI 
indicators (d) from 2020 to 2021 in Beijing. NPI non-pharmaceutical intervention
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Fig. 2  The changes of mean temperature (a), absolute humidity (b), and relative humidity (c) from 2011 to 2021 and the stringency of 9 NPI 
indicators (d) from 2020 to 2021 in the Hong Kong SAR. NPI non-pharmaceutical intervention. Hong Kong SAR: Hong Kong Special Administrative 
Region
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humidity, and absolute humidity from the 1st week of 
2011 to the 50th week of 2021 in Beijing and the Hong 
Kong SAR, respectively (Figs.  1 and 2). The nine NPI 
indicators were descriptively analyzed from the 1st week 
of 2020 to the 50th week of 2021 in the above two set-
tings (Figs. 1 and 2).

The weekly ILI counts were computed by multiply-
ing the weekly ILI rate by a constant 10,000, represent-
ing weekly ILI consultations per 10,000 outpatient visits. 
Given that the incubation period of influenza (1‒4) days 
[27] and the lagged effect of meteorological factors and 
NPIs on influenza transmission from exposure to report-
ing, the weekly ILI counts were smoothen one week back 
using the moving average method in the study. Then the 
temporal trend of the average weekly ILI counts in 2011–
2019, the observed in 2020, and the observed in 2021 was 
presented together from the 1st week to the 52nd week 
in Beijing and the Hong Kong SAR, respectively (Fig. 3). 
The interannual and seasonal trend of observed weekly 
ILI counts was also presented together with estimates of 
the GAM models below from the 1st week of 2011 to the 
50th week of 2021 in each city (Figs. 4 and 5).

GAM models
First, GAM models based on data from the 1st week of 
2011 to the 52nd week of 2019 was established to predict 
the weekly ILI counts for the COVID-19 period of the 1st 
week of 2020 to the 50th week of 2021 under a counter-
factual scenario of no COVID-19 and its interventions 
in Beijing and the Hong Kong SAR, respectively. Before 
modeling, collinearity between mean temperature, rela-
tive humidity, and absolute humidity was analyzed using 
the Pearson correlation method (Additional file 1: Tables 
S3 and S4). Thus, if the correlation coefficient for a pair 
was greater than 0.7, only one was included in the model. 

As a result, mean temperature and relative humidity, but 
not absolute humidity, were incorporated into two types 
of predictive GAM models as follows. Equation  6 takes 
both seasonal and interannual variations into account, 
which Eq. 7 only considers seasonal features.

where E(Yi) is the expected weekly ILI counts in a given 
week (i), and the link function here is log() with the 
assumption that weekly ILI counts follows log normal dis-
tribution; α is the intercept; ns(.) is a cubic spline function, 
df  is the degree of freedom; Yeari is a time series of year 
numbers (1, 2, 3…, 11) in the dataset, representing the 
potential interannual long-term trend in ILI counts; Wi is 
a time series of week numbers (1, 2, 3…, 52) in a calendar 
year, representing the potential seasonality trend in weekly 
ILI counts; Ti is mean temperature in week (i); RHi is rela-
tive humidity in week (i). The degrees of these factors are 
determined by partial autocorrelation functions [28]. Hi 
is an indicator variable that equals 0–7 representing how 
many days of school and public holidays in a week (i). 
The population density (pd) of each city per year was also 
incorporated into the model to adjust for potential demo-
graphic confounding factors across space and time.

The models were built and trained using 2011–2019 
data in Beijing and the Hong Kong SAR, respectively. The 
goodness of fit of the GAM models was assessed by root 
mean square error (RMSE), Akaike information criterion 
(AIC), and adjusted R-square (Additional file  1: Tables 

(6)

log[E(Yi)] = α + ns
(

Yeari, df
)

+ ns
(

Wi, df
)

+ ns
(

Ti, df
)

+ ns
(

RHi, df
)

+ factor(Hi)+ pd

(7)
log[E(Yi)] = α + ns

(

Wi, df
)

+ ns
(

Ti, df
)

+ ns
(

RHi, df
)

+ factor(Hi)+ pd

Fig. 3  Comparison of the observed weekly ILI counts in 2020–2021 with mean and 95% CI of ILI in 2011–2019 in a Beijing and b the Hong Kong 
SAR, respectively. ILI influenza-like illness, CI confidence interval, Hong Kong SAR Hong Kong Special Administrative Region



Page 7 of 15Zhang et al. Infectious Diseases of Poverty           (2023) 12:11 	

S5 and S6). However, the ILI in 2018–2019 in the Hong 
Kong SAR were much lower than those in the previous 
years, which might be due to the instability of ILI report-
ing during the protests or riots in the city during 2018–
2019. Thus, the inclusion of the Yeari term or ILI data in 
2018–2019 could lead to a continuous downward trend 
in ILI prediction from 2018 to 2021, which might not be 
fully representative of the real situation. To address this, 
we also tested and compared Eq. 6 using 2011–2017 data 

for both cities. Considering the data reliability, the good-
ness of fit of the models and the uncertainty of predic-
tions (Figs. 4 and 5), the subsequent results in the main 
text were mainly retrieved from the predictions of Eq. 7, 
while the results of other models were presented in the 
Additional file 1.

Second, a simple GAM model including univariate 
interventions was established to assess the relationship 
between the relative reduction of weekly ILI counts and 

Fig. 4  Observed and predicted weekly ILI counts from 2011 to 2021 in Beijing, estimated by GAM models using: a Eq. 6 and ILI data in 2011–2019, 
b Eq. 6 and ILI data in 2011–2017, and c Eq. 7 and ILI data in 2011–2019, respectively. The estimated ILI in 2020–2021 were predicted under a 
counterfactual scenario of no COVID-19 interventions. The purple-shaded parts indicate the period of the COVID-19 pandemic and its related NPIs. 
ILI influenza-like illness, GAM generalized additive model, COVID-19 coronavirus disease 2019, NPIs non-pharmaceutical interventions
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each individual or combined NPI measure, from 4th 
week of 2020 when the large-scale COVID-19 NPIs were 
implemented, to the 50th week of 2021 in Beijing and the 
Hong Kong SAR, respectively. After examining the col-
linearity using the Pearson correlation (Additional file 1: 
Tables S7 and S8), the relative change of mean tempera-
ture and the relative change of relative humidity, but not 
the relative change of absolute humidity, were incorpo-
rated into the model. The basic model is as follows:

where E(Yi_c) is the expected relative reduction of ILI 
counts in week (i) (Eq.  9) with the assumption that the 
relative reduction of weekly ILI counts follows nor-
mal distribution; ac is the intercept; Si is a time series 
of week numbers (1,2,3…,99) during the study period in 

(8)

E(Yi_c) = a_c + βjXj
+ ns

(

Si, df
)

+ ns
(

Ti_c, df
)

+ns
(

RHi_c, df
)

+ pdi_c

Fig. 5  Observed and predicted weekly ILI counts from 2011 to 2021 in the Hong Kong SAR, estimated by GAM models using: a Eq. 6 and data in 
2011–2019, b Eq. 6 and data in 2011–2017, and c Eq. 7 and data in 2011–2019, respectively. The estimated ILI in 2020–2021 were predicted under a 
counterfactual scenario of no COVID-19 interventions. The purple-shaded parts indicate the period of the COVID-19 pandemic and its related NPIs. 
ILI influenza-like illness, Hong Kong SAR Hong Kong Special Administrative Region, GAM generalized additive model, COVID-19 coronavirus disease 
2019, NPIs non-pharmaceutical interventions
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2020–2021, representing the potential seasonality and 
long-term trend in weekly ILI counts; Ti_c is the relative 
change of mean temperature in week (i) (Eq. 10); RHi_c 
is the relative change of relative humidity in week (i) 
(Eq. 11); pdi_c is the relative change of population den-
sity (Eq. 12); Xj refers to the each individual or combined 
NPI indicator, and βj is its coefficient. A positive coef-
ficient represents that the intervention, or its intensity 
might not be statistically associated to the decrease of 
weekly ILI counts across the whole study period, while 
a negative coefficient reveals that the implementation of 
COVID-19 NPIs might be associated with the reduction 
of ILI in the city.

Third, a multivariate GAM model including multiple 
interventions was further built to assess the relationship 
between the relative reduction of weekly ILI counts and 
the NPI indicators. Due to the collinearity among the 
individual or combined NPI indicators (Additional file 1: 
Tables S9–S12), for each individual NPI, only C3, C4, C6, 
C7, C8, and H6 were incorporated into the GAM model 
for Beijing and C1, C2, C3, C4, C6, C7, C8, and H6 were 
incorporated into the model for Hong Kong; for the com-
bined NPI indicators, C34 and C567 were incorporated 
into the GAM model with C8 and H6 for Beijing and 
the C12, C34, C567, C8 and H6 were incorporated into 
the GAM model for Hong Kong. The basic model is as 
follows:

The meaning of the symbols in Eq. 13 was the same as 
that in Eq. 8. The goodness of fit of the GAM models in 
Beijing and the Hong Kong SAR in 2020–2021 was also 
assessed by RMSE, AIC and adjusted R-square (Addi-
tional file 1: Table S13).

Cross‑validation
To understand the robustness of GAM models, we per-
formed a blocked cross-validation analysis. For the GAM 
models in 2011–2019, in the first step, data in 2011–2016 
(312 consecutive weeks) were used as a training set to 

(9)
Yi_c =

Observed weekly ILI counts−predicted weekly ILI counts
predicted weekly ILI counts

(10)
Ti_c =

Observed mean temperature−average in the past 9 years
average in the past 9 years in 2011−2019

(11)
RHi_c =

Observed relative humidity−average in the past 9 years
average in the past 9 years in 2011−2019

(12)pd_c =
Population density−average in the past 9 years

average in the past 9 years in 2011−2019

(13)

E(Yi_c) = α +
∑

βj
(

Xj

)

+ ns
(

Si, df
)

+ ns
(

Ti_c, df
)

+ns
(

RHi_c, df
)

+ pd_c

establish the model and data in the following year 2017 
(52 consecutive weeks) were used as a test set. In the sec-
ond step, it was pushed forward for a week both for the 
training and test set. Such analysis continued until the 
last week of 2019. At last, 105 analyses were performed 
for each model and goodness of fit indicators (mean and 
95% CI) were calculated (Additional file 1: Tables S5 and 
S6). For the GAM models in 2011–2017, in the first step, 
data in 2011–2015 (260 consecutive weeks) were used as 
a training set to establish the model and data in the fol-
lowing year 2016 (52 consecutive weeks) were used as 
a test set. In the second step, it was pushed forward for 
a week both for the training and test set. Such analysis 
continued until the last week of 2019. At last, 52 analy-
ses were performed for each model and goodness of fit 
indicators (mean and 95% CI) were calculated (Addi-
tional file 1: Tables S5 and S6). Similarly, to test the per-
formance of GAM models for revealing the NPI impacts 
in 2020–2021, data in the first 52 consecutive weeks were 
initially used as a training set to establish the model and 
data in the following consecutive 8 weeks were used as a 
test set. Both sets were moved forward 1 week at a time 
in the following steps until the last week of 2021. At last, 
35 analyses were performed for each model with the 
goodness of fit indicators calculated (Additional file  1: 
Table  S13). Inferred from the blocked cross-validation 
analysis (Additional file  1: Tables S5, S6 and S13), the 
performance of model 1, 2 and 3 in each block were 
quite stable (relatively small values of average RMSE, 
AIC and adjusted R2 with narrow 95% confidence inter-
vals, respectively). These further implied that all models 
were robust to the changes in data and had a low risk of 
overfitting.

Dataset establishment and data analyses for this study 
were implemented using R version 4.0.0 (2020-04-
24) (R Foundation for Statistical Computing, Vienna, 
Austria) and Excel Microsoft 365MSO (207 Build 
16.0.15427.20182) (Microsoft, Washington, USA).

Results
Descriptive analysis
In Beijing, mean temperature exhibited regular sea-
sonal fluctuations, ranging between -9 and 30 degrees 
(Fig.  1a). The range of relative humidity was 0.1–0.9 
(Fig. 1b). The absolute humidity also presented seasonal 
characteristics, fluctuating between 0 g/m3 and 23 g/m3 
(Fig.  1c). Compared with Beijing, the Hong Kong SAR 
also showed seasonal fluctuations in temperature and 
humidity, but the mean temperature was higher, rang-
ing between 9 and 32 degrees (Fig. 2a). Hong Kong was 
also more humid with the relative humidity of 0.3–0.9 
(Fig. 2b) and the absolute humidity between 4  g/m3 and 
24 g/m3 (Fig. 2c). The stringency and duration of the nine 
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NPI indicators for COVID-19 in both cities changed over 
time in 2020–2021 (Figs. 1d and 2d). In addition, during 
2020–2021 season (from 14th week in 2020 to 13th week 
in 2021, as a surveillance year), the observed weekly ILI 
counts were much lower than that of the past nine sea-
sons of 2011–2019 in Beijing (Fig. 3a), with a 47.5% (95% 
CI: 42.3%, 52.2%) reduction on the weekly averages. Simi-
larly, the observed weekly ILI counts for the same period 
in the Hong Kong SAR were much lower than those of 
past nine seasons (Fig. 3b), with an average of 60.0% (95% 
CI: 58.6%, 61.1%) reduction from 2011‒2019.

Predicting weekly ILI counts with no COVID‑19 NPIs 
in 2020–2021
In Beijing, annual ILI counts peaked during the colder 
winter-spring months in 2011–2019 (Fig.  4). Since late 
January 2020, the ILI counts had reduced substantially 
and remained at low levels through 2021, with no “winter 
peaks” (Fig. 4). However, the weekly ILI counts predicted 
by different models under a counterfactual scenario of 
no COVID-19 interventions would have a typical winter-
spring epidemic season in 2020–2021 (Fig. 4). The aver-
ages of observed weekly ILI counts were much lower 
than predicted average weekly ILI counts during the 
2020–2021 season, with a 40.2% (95% CI: 35.4%, 45.3%) 
reduction from predictions (Fig. 4c).

In the Hong Kong SAR, year-round ILI reports with 
highly irregular fluctuations were also observed across 
years in 2011–2019 (Fig.  5). Since 2020, the ILI counts 
had a steep decrease and remained at low levels through 

2021, but two peaks could be still observed in late 2020 
and 2021 (Fig. 5). The predicted weekly ILI counts using 
different modelling approaches and historical data were 
well above the observed values across years in 2020‒2021 
(Fig.  5). The observed weekly ILI counts in 2020–2021 
season had a 58.0% (95% CI: 54.1%, 61.5%) reduc-
tion, compared with  estimates under the scenario with-
out COVID-19 NPIs (Fig. 5c).

Potential impacts of individual and combined NPIs on ILI 
reduction
Inferred from the models of univariable analysis by 
including one type or group of interventions at a time, 
each individual or combined NPIs and the overall effect 
of NPIs were associated with the decrease of the ILI in 
Beijing (Table 1). Inferred from the coefficients of GAM 
models using multivariate analysis of interventions, the 
integration of “Cancelling public events” (−  0.159, 95% 
CI: − 0.220, − 0.099) and “Restrictions on internal travel” 
(− 0.127, 95% CI: − 0.203, − 0.051) played an important 
role in the reduction of ILI in the city (Table 2). However, 
only “Restrictions on international travel” (− 0.132, 95% 
CI: −  0.187, −  0.077) were statistically associated with 
ILI reduction in the Hong Kong SAR, and it seems that 
the stringency of other measures might not be sufficient 
to suppress ILI or its variation of implementation across 
all weeks in 2020‒2021 might not be consistently asso-
ciated with the decrease of ILI counts during the study 
period (Tables  1 and 2). The potential impacts of indi-
vidual and combined NPIs on ILI reduction were also 

Table 1  The potential impact of each individual and combined NPI on weekly ILI counts in Beijing and the Hong Kong SAR, 2020–
2021

The numbers presented are the coefficient with its 95% CI (data in the round bracket) of each intervention in GAM models (Eq. 8), to reflect their potential impact on 
weekly ILI counts. A positive coefficient represents that the intervention, or its intensity might not be statistically associated to the decrease of weekly ILI counts across 
the whole study period, while a negative coefficient represents the implementation of COVID-19 NPIs might be associated with the reduction of ILI in the city. Besides, 
population density change and non-parametric terms of s(time), s(mean temperature change), and s(relative humidity change) were also incorporated into the GAM 
models to adjust for potential confounding factors between cities. NPI non-pharmaceutical intervention, ILI influenza-like illness, Hong Kong SAR Hong Kong Special 
Administrative Region, GAM generalized additive model. CIs, Confidence intervals; COVID-19, Coronavirus disease 2019. *P < 0.05

Interventions Beijing Hong Kong SAR

C1: Closings of schools − 0.086 (− 0.158, − 0.014)* 0.053 (0.008, 0.099)*

C2: Closings of workplaces − 0.128 (− 0.188, − 0.069)* 0.059 (0.021, 0.097)*

C3: Cancelling public events − 0.178 (− 0.234, − 0.121)* 0.004 (− 0.043, 0.051)

C4: Limits on gatherings − 0.046 (− 0.074, − 0.018)* − 0.001 (− 0.036, 0.035)

C5: Closing of public transport − 0.096 (− 0.177, 0.015)− * 0.426 (0.272, 0.579)*

C6: Staying in place or at home − 0.081 (− 0.139, − 0.022)* 0.186 (0.090, 0.282)*

C7: Restrictions on internal travel − 0.166 (− 0.224, − 0.108)* 0.139 (0.000, 0.278)

C8: Restrictions on international travel 0.059 (0.002, 0.115)* − 0.113 (− 0.161, − 0.065)*

H6: Mask wearing outside the home − 0.145 (− 0.270, − 0.021)* 0.071 (0.003, 0.139)*

C12: Closings of schools and workplaces − 0.168 (− 0.245, − 0.091)* 0.062 (0.018, 0.107)*

C34: Cancelling public events or gatherings − 0.099 (− 0.140, − 0.057)* 0.005 (− 0.050, 0.059)

C567: Restrictions on internal movement − 0.088 (− 0.118, − 0.057)* 0.419 (0.246, 0.592)*

All NPIs as a whole − 0.282 (− 0.378, − 0.186)* 0.079 (− 0.018, 0.177)
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assessed by predicted values from the Eq. 6 using data in 
2011–2019 and 2011–2017, respectively, with findings 
similar to those described above (Additional file 1: Tables 
S14–S17).  In addition, details on the estimated  and fit-
ted relative reduction of weekly ILI counts in Beijing and 
Hong Kong SAR in 2020–2021 using equations  6 and 
7 could be available from Additional files 2, 3, 4, 5, 6, 7. 

Discussion
Our study found that the weekly ILI counts decreased 
and remained at low levels in both Beijing and the 
Hong Kong SAR from 2020 to 2021. The results of our 
study are consistent with those of previous similar stud-
ies in China and abroad [29–32]. The rapid decrease of 
ILI counts during the early stage of the COVID-19 pan-
demic and the sustained low-level activity could largely 
be attributed to the COVID-19 pandemic and its related 
NPIs. As ILI is a proxy for influenza activity, a decrease 
in ILI could also be reasonably interpreted as a decrease 
in the activity of influenza or other respiratory infections. 
A possible mechanism may be that NPIs reduce human-
to-human contact (e.g., social distancing), interrupt the 
spread (e.g., travel restrictions), and improve personal 
hygiene (e.g., face masking and hand washing) to contain 
or mitigate the transmission, like COVID-19 [8–10]. It 
has long been recognized that domestic and international 

travel likely play an important role in the spread of the 
influenza virus [33]. Thus, the greatly reduced regional 
and international travel during the pandemic was likely 
a key factor. Restrictions on gatherings or public events 
added to the effect. Additionally, students are believed to 
play a crucial role in influenza transmission within com-
munities, a factor that was eliminated by the closing of 
schools. Furthermore, mask-wearing has already been 
proven to effectively reduce the transmission of respira-
tory viruses, including influenza and SARS-CoV-2. Other 
reasons behind the steep decrease of ILI could be the 
lower health care seeking rate during the COVID-19 pan-
demic [34] or the interruption of routine influenza sur-
veillance by COVID-19.

The performance of GAM models in 2011–2019 for 
Beijing seems better than that for the Hong Kong SAR. 
Climate factors might partially account for this phenom-
enon. Beijing is in a temperate zone, where influenza and 
other common respiratory viruses normally presented a 
regular seasonal pattern before the COVID-19 pandemic. 
For example, the influenza virus was primarily transmit-
ted and peaks during the colder winter-spring months. 
However, in the Hong Kong SAR, seasonal characteris-
tics of influenza are more diverse. Influenza epidemics 
in the Hong Kong SAR can persist year-round, with two 
or more peaks occurring in 1 year [35]. The complication 

Table 2  Multivariable analysis for the potential impact of NPIs on weekly ILI counts in Beijing and the Hong Kong SAR, 2020–2021

The numbers presented here are the coefficient (95% CI) of the GAM models (Eq. 13), to reflect the potential impact of synthetical COVID-19 interventions on weekly 
ILI counts. A positive coefficient represents a potential effect of increasing the weekly ILI counts. A negative coefficient represents a potential effect of reducing the 
weekly ILI counts. Besides the above NPIs indicators, non-parametric terms of s(time), s(mean temperature change), s(relative humidity change) and population 
density change were also incorporated into the GAM models. NPI non-pharmaceutical intervention, ILI influenza-like illness, Hong Kong SAR Hong Kong Special 
Administrative Region, GAM generalized additive model, CIs Confidence intervals, COVID-19 Coronavirus disease 2019. –, not incorporated into the model due to the 
multicollinearity. *P < 0.05

Interventions Beijing Hong Kong SAR

For individual NPI indicators

 + C1: Closings of schools – − 0.046 (− 0.111, 0.020)

 + C2: Closings of workplaces – 0.092 (0.027, 0.158)

 + C3: Cancelling public events − 0.159 (− 0.220, − 0.099)* − 0.023 (− 0.081, 0.036)

 + C4: Limits on gatherings 0.041 (0.099, 0.006)* − 0.025 (− 0.065, 0.015)

 + C5: Closing of public transport – –

 + C6: Staying in place or at home − 0.046 (− 0.099, 0.006) 0.140 (− 0.005, 0.285)

 + C7: Restrictions on internal travel − 0.127 (− 0.203, − 0.051)* − 0.002 (− 0.220, 0.216)

 + C8: Restrictions on international travel 0.030 (− 0.020, 0.080) − 0.132 (− 0.187, − 0.077)*

 + H6: Mask wearing outside the home − 0.101 (− 0.207, 0.004) 0.002 (− 0.081, 0.086)

For combined NPI indicators

 + C12: Closings of schools and workplaces – 0.036 (− 0.024, 0.097)

 + C34: Cancelling public events or gatherings − 0.041 (− 0.095, 0.014) − 0.009 (0.071, 0.052)

 + C567: Restrictions on internal movement − 0.068 (− 0.106, − 0.031)* 0.297 (0.095, 0.499)

 + C8: Restrictions on international travel − 0.008 (− 0.061, 0.045) − 0.115 (− 0.170 − 0.061)*

 + H6: Mask wearing outside the home − 0.068 (− 0.183, 0.047) 0.001 (− 0.075, 0.076)
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of the inherent periodicity and local transmission might 
make it difficult to simulate and forecast influenza activ-
ity in the Hong Kong SAR. In addition, the instability in 
ILI data reporting in the Hong Kong SAR, e.g., decreas-
ing ILI level in 2018–2019 that might be partially attrib-
uted to social unrest, added to the uncertainty in the 
estimates of the GAM models.

Additionally, inference from the GAM model, “Cancel-
ling public events” and “Restrictions on internal travel” 
measures played an important role in the reduction of ILI 
in Beijing, whereas “Restrictions on international travel” 
had a greater impact in the Hong Kong SAR. The unique 
socio-economic features of the two cities could be the 
underlying reasons. “Canceling public events” is one of 
the social-distancing measure, which could significantly 
reduce person-to-person contact with high intensity [36], 
especially in a super developed city, like Beijing. It was 
reported that in Beijing, the average one-way commute 
is 11.3 kilometers and 48 minutes, with heavily burden of 
super-commuting, ranking first in China [37, 38]. Thus, 
“Restrictions on internal travel” might massively reduce 
movements of crowds, in turn, decreasing the ILI level and 
influenza activity. The Hong Kong SAR is highly connected 
with the Chinese mainland and other regions worldwide, 
attracting over 50 million visitors per year before the pan-
demic, with a high population density of 6810 per km2 
[26]. This might increase the importation rate of influ-
enza strains and further facilitate local transmission [15, 
35]. Therefore, restrictions on international movements 
could lead to a decrease in ILI and influenza activity. It 
should be noted that many measures (e.g., restriction on 
internal travel) in the Hong Kong SAR were not statisti-
cally significant across the whole study period, which does 
not mean that they have no effect on the prevention and 
control of respiratory infectious diseases. In addition, the 
reason might be that the intensity of some NPIs in Hong 
Kong was not high enough compared to same measures in 
other regions [39], or the implementation of NPIs was not 
well documented in the dataset and the multicollinearity 
of NPIs exists. As to why “International travel restriction” 
was not significant in Beijing might be partially attributed 
to the following reasons. First, flights from abroad had 
been reduced massively in Beijing and diverted strictly to 
other provinces/cities early since late January 2020 and 
kept through 2021 and even longer. Second, international 
travel only accounted for a small proportion of all people 
into Beijing as travel from other provinces in the Chinese 
mainland into Beijing were considered as internal move-
ment. Third, the effects of other NPIs (e.g., “Cancelling 
public events” and “Restrictions on internal travel”) were 
higher in Beijing and the impact of “International travel 
restriction” was masked in the modelling.

Our study had several limitations. First, the hetero-
geneity in the effects of NPIs on ILI counts between the 
two settings might be associated with other sociodemo-
graphic factors, including age structure and influenza 
vaccination coverage, which were not included in the 
current study. Second, “mean” was used when combining 
the NPI indicators because nine indicators (C1‒C8 and 
H6) used in the study were coded using a numeric scale. 
However, if the values of indicators were not normally 
distributed, and the averaged values might lead to biases 
in the analyses. Third, it was an observational study. 
Evaluation of the impact of NPIs on ILI counts should be 
interpreted as an association, rather than a causal corre-
lation. Decreased influenza activity could also be partly 
attributed to changes in healthcare-seeking behavior or 
potential disruption of COVID-19 pandemic sentinel 
surveillance. Fourth, owing to data availability issues, 
our study period was limited to 2020 through 2021, and 
the study settings were limited to Beijing and the Hong 
Kong SAR. Longer time-series data and more representa-
tive settings and datasets should be considered to further 
explore the relationship between ILI activity and NPIs.

However, the COVID-19 pandemic interruption has 
added uncertainty to the transmission of influenza or 
other respiratory infections in the future. Although many 
ILI among populations were prevented by COVID-19 
NPIs, as founded in this study, decreased exposure to 
the respiratory pathogens, e.g., influenza viruses, cre-
ated an immunity gap as susceptible individuals who 
avoided infection lack immunity against future infections 
[5]. Moreover, decreased influenza vaccination has been 
observed among different populations at multiple loca-
tions [40–42], which would also contribute to the immu-
nity gap. As the COVID-19 pandemic evolves, NPIs are 
becoming more relaxed in more countries and regions 
progressively. Health systems and society must prepare 
for the potential non-typical rebound or outbreak of 
influenza and other respiratory infectious diseases.

Conclusions
Our study suggests that COVID-19 NPIs had an impact 
on reducing outpatient ILI consultations in the pres-
ence of other seasonal driving factors in Beijing and the 
Hong Kong SAR from 2020 to 2021. As immunity wanes 
among populations, potential rebounds or outbreaks of 
influenza and other respiratory pathogens need to be 
closely monitored. Based on our findings, some NPIs 
with appropriate stringency in cities with varying local 
circumstances may be tailored to reduce the burden of 
ILI caused by severe influenza strains or other respira-
tory infections in future.
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