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Abstract 

Background  Myanmar bears the heaviest malaria burden in the Greater Mekong Subregion (GMS). This study 
assessed the spatio-temporal dynamics and environmental predictors of Plasmodium falciparum and Plasmodium 
vivax malaria in Myanmar.

Methods  Monthly reports of malaria cases at primary health centers during 2011–2017 were analyzed to describe 
malaria distribution across Myanmar at the township and state/region levels by spatial autocorrelation (Moran index) 
and spatio-temporal clustering. Negative binomial generalized additive models identified environmental predictors 
for falciparum and vivax malaria, respectively.

Results  From 2011 to 2017, there was an apparent reduction in malaria incidence in Myanmar. Malaria incidence 
peaked in June each year. There were significant spatial autocorrelation and clustering with extreme spatial heteroge-
neity in malaria cases and test positivity across the nation (P < 0.05). Areas with higher malaria incidence were concen-
trated along international borders. Primary clusters of P. falciparum persisted in western townships, while clusters of 
P. vivax shifted geographically over the study period. The primary cluster was detected from January 2011 to Decem-
ber 2013 and covered two states (Sagaing and Kachin). Annual malaria incidence was highest in townships with a 
mean elevation of 500‒600 m and a high variance in elevation (states with both high and low elevation). There was 
an apparent linear relationship between the mean normalized difference vegetative index and annual P. falciparum 
incidence (P < 0.05).

Conclusion  The decreasing trends reflect the significant achievement of malaria control efforts in Myanmar. Prioritiz-
ing the allocation of resources to high-risk areas identified in this study can achieve effective disease control.
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Background
The global malaria burden is still enormous; there 
were about 247 million cases in 2021, of which 5.4 mil-
lion cases occurred in Southeast Asia [1]. The Greater 
Mekong Subregion (GMS) consists of Cambodia, Laos, 
Myanmar, Thailand, Vietnam, and two provinces of 
China (Yunan and Guangxi), where Myanmar (87.7%) 
accounted for most of the indigenous cases of malaria 
in 2021 [1]. Myanmar accounted for most of the Plas-
modium falciparum malaria cases within the region. As 
falciparum malaria cases declined over time, P. vivax has 
become the dominant species [2]. Despite the overall 
decline of malaria incidence over the last several years, 
Myanmar still reports the majority of malaria cases and 
deaths in the GMS [3–5].

The Mekong Malaria Elimination (MME) program is 
an initiative to support the GMS countries in achieving 
the goal of malaria elimination by 2030. However, there 
are several potential barriers to eliminating malaria in 
the GMS. First, the emergence and spread of parasites 
resistant to antimalarial drugs and mosquitoes resist-
ant to insecticides hinder the elimination course. Previ-
ous reports of asymptomatic P. falciparum and P. vivax 
isolates carrying genes potentially associated with drug 
resistance suggest a silent spread of drug-resistant para-
sites in Myanmar [6–8]. The vector species display tre-
mendous spatial heterogeneity in distribution in the 
GMS, many of which have developed resistance to 
insecticides used in public health interventions [9–11]. 
Second, there is a trend for higher levels of transmis-
sion and malaria-related mortality near international 
borders, making ‘border malaria’ a concern for malaria 
prevention. Third, because of internal military conflicts 
in Myanmar, refugees and internally displaced people 
rushed to and settled down along the international bor-
ders, increasing the risk of infectious diseases. Border 
regions frequently exhibit cultural and linguistic hetero-
geneity, complicating healthcare education, disease pre-
vention, and administration.

Monitoring border malaria is important, but an over-
all analysis at the national level is essential for govern-
ments or organizations to rationally allocate material and 
human resources for malaria control. By 2016, 291 out 
of 330 townships in Myanmar were endemic, with more 
than 40 million people at risk for malaria [12]. According 
to the data on malaria cases from October to December 
2021, P. falciparum and P. vivax cases were distributed 
in the western, southern and northeast regions of Myan-
mar, whereas the central regions were essentially devoid 
of malaria [2]. This spatial heterogeneity, or uneven dis-
tribution of malaria cases across the landscape, occurs at 
multiple spatial scales. Some nations have a greater bur-
den than others, some states or provinces within nations 

have greater burdens than others, and communities like-
wise vary in their malaria burdens. Spatial analyses that 
describe and help explain the spatial and spatio-temporal 
patterns of malaria are important for public health sur-
veillance, implementation of interventions, and for gen-
eral policies [13–15]. For monthly cases, May to August 
each year is the peak season of malaria infection in 
Myanmar [2]. However, the temporal trends of P. falcipa-
rum and P. vivax malaria in Myanmar are unclear.

Thus, the present study explored the spatiotempo-
ral dynamics of malaria incidence in Myanmar, at both 
township and state/region levels, to obtain a granular 
view of the heterogeneous malaria distribution, detect 
malaria clusters for targeted control, and identify envi-
ronmental predictors of P. falciparum and P. vivax 
malaria. Such information will be essential to informing 
regional malaria elimination efforts.

Methods
Study area
Myanmar lies between latitudes 9° and 29° N and lon-
gitudes 92° and 102° E; has a total area of 678,500 km2; 
and is bordered by China, Laos, Thailand, Bangladesh 
and India. The nation is divided into five physiographic 
regions: the northern mountains, the western ranges, the 
eastern plateau, the central basin and lowlands, and the 
coastal plains. There are three seasons: the cool season 
(late October to mid-February), the hot-dry season (mid-
February to mid-May), and the rainy season (mid-May 
to late October). Agriculture, forestry, and fishing con-
stitute the most significant contributors to Myanmar’s 
economy. Annual rainfall in the delta region is approxi-
mately 2500 mm, while the average annual rainfall in the 
dry zone in central Myanmar is less than 1000 mm [16]. 
Myanmar has seven states and seven regions, including 
63 districts and 330 townships, with a total population of 
about 50,279,900 people in the 2014 census.

Data source
Data for this study were obtained from the National 
Malaria Control Program (NMCP) and other partners 
such as the Myanmar Medical Association, Medical 
Action Myanmar, Myanmar Council of Churches, and 
Myanmar Health Assistant Association. The data include 
yearly counts of malaria cases and tests at the town-
ship level from 2011 to 2017 and monthly malaria cases 
at the state or regional level from 2011 to 2016. Popula-
tion counts likewise came from the NMCP. Townships 
are smaller administrative units than states and regions. 
Areas defined as either states or regions have been clas-
sified based on political and socio-cultural factors but at 
the same administrative level.
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Environmental predictor variables for vegetation and 
surface flooding were derived from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) products 
(MOD13Q1/MYD13Q1 250  m AQUA/TERRA 16-day 
composites). Since many infectious diseases, especially 
vector-borne diseases, are strongly influenced by envi-
ronmental factors, we hypothesized that indicators of 
vegetation and surface flooding would correlate with 
malaria cases. Three environmental indices were down-
loaded and considered in these analyses: the normalized 
difference vegetation index (NDVI), the enhanced vege-
tation index (EVI), and a normalized flooding index (NFI) 
[17]. NFI is indicative of surface water, NDVI is indica-
tive of green surface vegetation, and EVI is an improved 
measure of green vegetation that is intended to account 
for dense forest canopies and atmospheric conditions 
that can lead to errors in NDVI measurements. Data 
were downloaded for each of these environmental indices 
(EI) within each 16-day period from 2011 to 2017. NDVI 
and EVI were strongly colinear, so we retained only EVI 
as an indicator of vegetation in our models. These vari-
ables were summarized at the township level by calcu-
lating the mean NFI and mean EVI for each year and for 
each township.

Elevation data were also downloaded from the Shuttle 
Radar Topography Mission 30  m dataset (https://​srtm.​
csi.​cgiar.​org/​srtmd​ata/), accessed through DIVA-GIS 
(https://​www.​diva-​gis.​org/​gdata). Summary statistics 
(mean elevation and variance in elevation) were calcu-
lated for each administrative unit using QGIS 3.10.1 soft-
ware (Open Source Geospatial Foundation, https://​www.​
qgis.​org).

Dynamics of malaria incidence and test positivity
Two primary epidemiological metrics were used in 
this research: the annual parasite incidence (API, also 
referred to as the case incidence) and the test positiv-
ity. API is the ratio of the number of symptomatic clini-
cal cases of malaria, microscopically or rapid diagnostic 
test (RDT) confirmed, in a population in a given year to 
the total population of the region in that year (reported 
as the number of cases per 1000 people). Test positivity is 
the number of positive cases divided by the total number 
of tests. We used both in this research because testing 
intensity can influence case incidence. For example, some 
places with little-to-no testing may have high malaria 
burdens that are not obvious when mapping or otherwise 
presenting case incidence alone. Malaria cases from the 
two most prevalent human Plasmodium parasites (P. fal-
ciparum and P. vivax) were also shown separately.

We plotted API and test positivity by species, across 
years for the entire nation, monthly for the entire nation, 
and annually by state or region. National and regional 

malaria API and test positivity for P. falciparum and 
P. vivax were calculated by year and graphed to show 
annual fluctuations. Species incidences for each month 
during 2011–2016 were calculated to observe seasonal 
fluctuations in malaria transmission [18].

We also mapped estimated crude API, smoothed API, 
and test positivity at the township level. Empirical Bayes 
smoothing (SEB) was used with the API estimates to 
account for potential variance instability from differences 
in population estimates across geographic units (which 
can lead to spurious outliers that appear to be hotspots or 
coldspots of disease). SEB smoothing improves the abil-
ity to identify overarching spatial patterns in diseases and 
other phenomena [19, 20]. These smoothed APIs were 
calculated using GeoDa 1.14.0 software (Open Source, 
https://​geoda​center.​github.​io), all maps were generated 
using QGIS version 3.10.1 (https://​www.​qgis.​org).

Spatial patterns in API and test positivity
We used three approaches for analyzing spatial autocor-
relation of API and test positivity: spatial correlograms, 
the Moran’s I statistic (both global and local), and scan 
statistics. Spatial correlograms illustrate the magnitude of 
spatial autocorrelation that exists (on the y-axis, with 1 
indicating perfect clustering, − 1 indicating perfect dis-
persal, and 0 indicating no spatial pattern) between pairs 
of administrative units at different distances away from 
each other (distances along the x-axis).

We then tested for global and local spatial autocorrela-
tion using Moran’s I statistic and local indicator of spa-
tial autocorrelation (LISA). Moran’s I ranges from 1 to 
− 1, with a score of zero indicating the null hypothesis of 
spatial randomness. Positive values indicate clusters of 
malaria cases, while negative values indicate that neigh-
boring areas are characterized by different malaria cases 
(i.e. areas with high cases neighboring areas with low 
cases). The LISA statistics were investigated and mapped 
to identify four types of clusters (high-high, low-low, 
high-low, and low-high) of smoothed P. falciparum and P. 
vivax incidence at the township level. High-high and low-
low clusters present hotspots and coldspots, respectively. 
High-low and low-high categories represent outliers [21]. 
The statistical significance was tested using 999 Monte 
Carlo permutations, and a P-value of 0.05 or less was 
considered statistically significant [22]. Both Moran’s I 
and LISA statistics are based on adjacency matrices, and 
the spatial weight matrix is based on a Queen adjacency 
matrix, which establishes connections between all neigh-
bors that share a common point or length on the bound-
ary. Moran’s I and LISA statistics were calculated using 
GeoDa 1.14.0 (https://​geoda​center.​github.​io).

Finally, we used Kulldorf ’s retrospective space-time 
scan statistics to test for likely clusters of cases in space 

https://srtm.csi.cgiar.org/srtmdata/
https://srtm.csi.cgiar.org/srtmdata/
https://www.diva-gis.org/gdata
https://www.qgis.org
https://www.qgis.org
https://geodacenter.github.io
https://www.qgis.org
https://geodacenter.github.io
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and time [23]. Briefly, the process involves scanning data 
windows across space and time and recording the num-
ber of observations and expectations within the window 
for each location in comparison to expected observa-
tions outside of the window. The risk of malaria within 
and outside the window was tested using a likelihood 
ratio test with the null hypothesis of equal risk across 
space. The window with the largest log likelihood ratio 
(LLR,the most likely cluster) was considered the cluster 
with the highest malaria risk. The window with the next 
to maximum LLR represented the secondary likely clus-
ter and was considered the area with the second highest 
malaria risk. The most likely cluster (primary cluster) 
was identified based on the maximum log likelihood 
ratio, other clusters with statistically significant log likeli-
hood values were defined as secondary clusters [24]. We 
used the discrete space-time Poisson model to look for 
malaria clusters in space and time, with 1-month tempo-
ral aggregations. The scan statistics were calculated using 
SaTScan™ version 9.3 (Kuldorff M. and Information 
Management Services, Inc. https://​www.​satsc​an.​org/).

Negative binomial regressions for predictors of reported P. 
falciparum and P. vivax malaria cases
We used negative binomial generalized additive models 
to look for predictors of malaria cases at the township 

level and annually for P. falciparum and P. vivax malaria, 
respectively. The models control for repeated measures 
within administrative units using a random intercept, 
and for the relative geographic locations of the adminis-
trative units using a smoothed spline function interaction 
term for the geographic locations of the mean centers of 
the administrative units. Rather than assuming the shape 
of the potential association between a given variable 
and the outcome (counts of malaria cases), smoothing 
splines were fit to the continuous covariates. Covari-
ates in the models included: mean elevation, variance in 
elevation, mean annual EVI, mean annual NFI, the num-
ber of exams in a given location, and the year. Regression 
analyses were performed separately for falciparum and 
vivax malaria. The model outputs are presented as plots 
of the spline functions. The generalized additive negative 
binomial regressions were calculated using the statistical 
software R 4.0 (R Core Team, R Foundation for statistical 
computing, Vienna, Austria).

Results
Trends of countrywide malaria incidence
From 2011 to 2017, a total of 1,426,737 malaria cases 
were reported in Myanmar. Malaria API and test posi-
tivity in Myanmar showed an overall decline, especially 
since 2012 (Fig.  1A). From 2012 to 2016, P. falciparum 

Fig. 1  A Dynamics of malaria incidence (number of cases per 1000 population) and test positivity among Myanmar residents from 2011 to 2017. 
B State/region wide malaria incidence rate from 2011 to 2017. C Test positivity of malaria at state/region level from 2011 to 2017. D Monthly 
incidence of malaria in Myanmar from 2011 to 2016. API Annual parasite incidence; TP Test positivity

https://www.satscan.org/
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cases had a relatively sharp decline, with a 9-fold reduc-
tion in API from 8.5 per 1000 in 2012 to 0.9 per 1000 in 
2016. Test positivity was similarly reduced from 32.6% 
in 2012 to 0.7% in 2016. In contrast, the decrease in P. 
vivax cases was gradual, with a 10-fold reduction in API 
from 3.0 per 1000 in 2012 to 0.3 per 1000 in 2016 and 
test positivity decreasing from 8.8% in 2012 to 1.6% in 
2016. Compared to 2016, both P. falciparum and P. vivax 
API experienced a rebound in 2017, although test posi-
tivity for both species continually declined (Fig. 1A). The 
annual API and test positivity in individual regions and 
states were generally consistent with the overall trend 
(Fig.  1B, C), while the incidence in the western border 
state Chin and southern border state Kayin showed a sig-
nificant upward trend in 2016‒2017, responsible for the 
overall increase of malaria API in Myanmar in 2016‒2017 
(Fig.  1B). Monthly incidence was generally high in the 
rainy season (May‒September), with the peak occurring 
in June or July each year (Fig.  1D). Some areas have a 
second peak in the cool/dry season (November–January, 
especially Rakhine and Chin states) (Fig. 2). It is notewor-
thy that Chin, Rakhine, and Kachin states ranked as the 
top malaria burden states in all years except 2012 (Fig. 2).

Township‑level and region‑level patterns of malaria 
incidence
At the township level, P. falciparum and P. vivax malaria 
exhibited similar spatial patterns. Correlograms of town-
ship P. falciparum and P. vivax malaria incidence showed 
significant spatial autocorrelation up to 100 km (Fig. 3), 
indicating that malaria incidence in Myanmar was not 
randomly distributed but rather occurred as clusters 
among adjacent townships. Also, in the autocorrelation 
analysis of the monthly incidence from 2011 to 2016 
(based on region-level data), we found that the incidence 
was positively correlated within the range of 100  km 
except in 2014, further corroborating the above result 
(Additional file 1: Figs. S1, S2, S3).

Spatial distribution and cluster of P. falciparum and P. vivax 
incidence
Analysis of the smoothed APIs showed that areas with 
higher incidence of P. falciparum malaria were concen-
trated along international borders (Fig.  4). Despite the 
substantial reduction in P. falciparum malaria incidence 
over the study period, the distribution pattern remained. 
The number of townships reporting no P. falciparum 

Fig. 2  Monthly incidence of malaria at state/region level in Myanmar from 2011 to 2016
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malaria increased from 58 (17.6%) in 2011 to 69 (20.9%) 
in 2016, but decreased to 52 (15.8%) in 2017 (Fig.  4; 
Table  1). The number of townships with an API of 0‒1 
per 1000 increased over the study period. In 2016 and 
2017, the number of townships with P. falciparum API of 
0‒1 per 1000 was 100 (30.3%) and 118 (35.8%), respec-
tively (Fig. 4; Table 1). The number of townships with an 
API of > 5 per 1000 sharply decreased from 231 (70.0%) 
in 2011 to 71 (21.5%) in 2017 (Fig. 4; Table 1).

From the LISA statistics, clustered high API townships 
(red) were confined to the northern and western parts 
of Chin State, Kachin State, and Saging Region, while 
the clustered low API townships (blue) were gathered in 
the central and southern parts. The spatial autocorrela-
tion (Global Moran’s I) ranked between 0.105 and 0.502 
(P < 0.016) during 2011‒2014 and 2016, revealing a sig-
nificant and positive spatial autocorrelation in Myanmar 

(Fig. 4, also Additional file 1: Figs. S4, S5). Over the seven 
years, the largest malaria clusters were concentrated in 
western areas of Myanmar. The number of townships 
covered by the primary clusters decreased from 19 in 
2011 to 1 in 2017. Secondary clusters were characterized 
in the northwest areas (Fig. 4; Table 2).

The P. vivax high API areas were also concentrated 
along international borders, and the number declined 
from 2012 to 2017. The number of townships reporting 
no P. vivax malaria cases decreased from 69 (20.9%) in 
2011 to 44 (13.3%) in 2017 (Fig. 5; Table 1). The num-
ber of townships with smoothed P. vivax API of 0‒1 per 
1000 increased from 97 (29.4%) to 130 (39.4%) (Fig. 5; 
Table  1). In 2016 and 2017, the number of townships 
with a P. vivax API of > 5 per 1000 was 48 (14.6%) and 
62 (18.8%), respectively (Fig. 5; Table 1). The clustered 
high API townships (red) were confined to the western, 

Fig. 3  Yearly spatial correlograms of P. falciparum malaria and P. vivax malaria. TP Test positivity; API annual parasite incidence; SEB smoothed 
empirical Bayesian rates (API that has been smoothed using the SEB approach)
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northern, and southeastern parts of Chin, Kachin, 
and Kayah states. For P. falciparum, clustered low API 
townships (blue) were gathered in central and south-
ern parts. The spatial autocorrelation ranked between 
0.083 and 0.221 (P < 0.035) during 2011‒2016, reveal-
ing a significant and positive spatial autocorrelation 
in Myanmar during this period. In 2017, there was no 
significantly spatial autocorrelation (Fig.  5, also Addi-
tional file 1: Figs. S6, S7). Unlike P. falciparum malaria, 
primary clusters of P. vivax malaria changed over the 
seven years. The number of townships covered by the 
primary clusters decreased from 37 in 2013 to 1 in 

2017. Secondary clusters were characterized in the 
northern areas in the last two years (Fig. 5; Table 3).

Temporal clustering
The temporal clustering of townships per year was ana-
lyzed to identify periods with a higher than expected 
number of cases, controlling for the population in the 
respective administrative units. For each stratum, a tem-
poral cluster was identified if there was the same seasonal 
pattern of high malaria incidence between states/regions 
in a given year. The temporal cluster decreased in length 
during the study period (June‒November in 2011 to 

Fig. 4  Maps of estimated P. falciparum malaria incidence (top row) and spatial autocorrelation. Likely clusters are indicated with red and blue circles. 
Statistical clusters of high and low numbers of cases (from LISA statistics) are indicated in the lower row. The Myanmar map is generated based on 
the latest Myanmar Information Management Unit (MIMU) shapefiles and administrative unit codes version 9.3 (http://​geono​de.​themi​mu.​info/)

Table 1  Number of townships by P. falciparum or P. vivax incidence rate groups for each year. Incidence is per 1000 population per 
year using SEB smoothed rates

Incidence rate 2011 2012 2013 2014 2015 2016 2017

P. falciparum

 0 58 58 58 62 61 69 52

 0‒1 17 21 19 20 61 100 118

 1‒5 24 31 48 84 103 100 89

 > 5 231 220 205 164 105 61 71

P. vivax

 0 69 60 62 60 59 65 44

 0‒1 97 26 24 46 89 109 130

 1‒5 106 61 82 95 92 108 94

 > 5 58 183 162 129 90 48 62

http://geonode.themimu.info/
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June‒July in 2017) (Table 4). The temporal cluster analy-
sis also showed that malaria incidence was concentrated 
in the rainy months, ranging from June to November. The 

range of months with higher temporal clustering var-
ied slightly from year to year. In 2016, malaria risk was 
higher in June‒July. From January 2011 to October 2013, 

Table 2  The clusters of P. falciparum cases detected using the purely spatial clustering in 2011–2017, Myanmar

Type, A: type of most likely cluster and B: second most likely cluster; n: the cluster number of township was identified by Kulldorff’s spatial scan; RR: relative risk; LLR: 
log likelihood ratio

Year Cluster type Cluster areas 
(n)

Observed Expected RR Radius (km) LLR P value

2011 A 19 82,306 16,321.67 6.07 193.69 73,093.61 0.000

B 37 96,774 30,464.18 3.86 301.82 51,754.42 0.000

2012 A 17 50,982 9558.10 6.42 134.74 47,658.75 0.000

B 51 74,841 26,736.30 3.55 458.53 34,438.70 0.000

2013 A 16 40,162 6330.15 7.98 128.30 44,093.98 0.000

B 31 40,085 11,314.10 4.32 274.45 24,683.83 0.000

2014 A 15 33,491 3736.28 12.73 126.67 48,613.24 0.000

B 31 27,116 6868.33 4.98 274.45 19,255.70 0.000

2015 A 1 6972 106.48 74.80 0 22,736.04 0.000

B 31 14,535 3633.68 5.07 274.45 10,492.98 0.000

B 1 4288 356.01 12.98 0 6883.72 0.000

B 2 1278 196.47 6.64 44.97 1322.27 0.000

2016 A 1 4135 50.73 96.54 0 14,448.37 0.000

B 21 6987 1411.46 6.38 184.96 6277.35 0.000

B 1 669 62.58 10.94 0 985.75 0.000

2017 A 1 13,016 42.98 407.00 0 63,212.89 0.000

B 3 6001 347.99 19.42 59.06 11,764.61 0.000

B 2 3497 180.67 20.71 44.97 7156.41 0.000

Fig. 5  Maps of estimated P. vivax malaria incidence (top row) and spatial autocorrelation. Likely clusters are indicated with red and blue circles. 
Statistical clusters of high and low numbers of cases (from LISA statistics) are indicated in the lower row. Myanmar map is generated based on the 
latest Myanmar Information Management Unit (MIMU) shapefiles and administrative unit codes version 9.3 (http://​geono​de.​themi​mu.​info/)

http://geonode.themimu.info/
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there was a temporal cluster of malaria cases in the study 
area (LLR = 207,689.62, P = 0.001). A total of 1,001,309 
malaria cases occurred during the same period, and the 
risk of malaria infection was 3.27 times that of other peri-
ods (Table 4).

Spatio‑temporal clusters of malaria
The space-time Poisson model showed two spatio-
temporal malaria clusters from 2011 to 2016 (Table  5). 

The primary cluster was detected from January 2011 to 
December 2013. The primary cluster covered two states 
(Sagaing and Kachin, Fig. 5) and persisted from 2011 to 
2016.

Relationships between reported malaria cases 
and environmental variables
Potential associations between variables in our nega-
tive binomial regression and malaria cases are assessed 

Table 3  The clusters of P. vivax cases detected using the purely spatial clustering in 2011–2017, Myanmar

Type, A: type of most likely cluster and B: second most likely cluster; n: the cluster number of township was identified by Kulldorff’s spatial scan; RR: relative risk; LLR: 
log likelihood ratio

Year Cluster type Cluster area 
(n)

Observed Expected RR Radius (km) LLR P value

2011 A 11 13,238 786.80 27.86 126.67 27,794.72 0.000

2012 A 11 17,224 3070.77 6.67 333.23 16,733.83 0.000

B 17 12,349 3481.29 3.94 134.74 7226.23 0.000

B 37 16,873 6907.02 2.77 301.82 5709.88 0.000

B 4 2100 396.65 5.39 51.56 1812.46 0.000

2013 A 37 14,156 4660.00 3.64 301.82 7062.14 0.000

B 16 7584 2284.14 3.64 134.65 4042.55 0.000

B 10 6136 1745.13 3.79 296.74 3487.38 0.000

B 11 3908 829.83 4.96 111.17 3055.90 0.000

2014 A 36 10,291 3027.27 4.20 298.48 6070.39 0.000

B 12 3924 580.24 7.37 111.96 4298.66 0.000

B 11 4733 1003.25 5.20 126.67 3791.77 0.000

2015 A 38 7751 2097.52 4.70 261.96 5132.20 0.000

B 12 3207 402.04 8.86 111.96 3999.60 0.000

B 1 1297 54.95 24.68 0 2885.72 0.000

2016 A 8 2250 209.46 12.42 120.51 3446.12 0.000

B 1 797 29.49 28.46 0 1879.63 0.000

B 31 3227 1006.40 3.80 274.45 1721.89 0.000

B 1 529 25.08 21.81 0 1117.38 0.000

B 5 286 39.16 7.42 35.22 323.86 0.000

2017 A 1 5389 22.38 289.26 0 24,663.74 0.000

B 1 2781 27.17 111.98 0 10,239.71 0.000

B 9 4107 434.45 10.69 181.89 5775.22 0.000

B 3 3559 437.37 9.03 49.81 4499.05 0.000

Table 4  The clusters of malaria cases detected using the purely temporal clustering in Myanmar 2011–2016

RR: relative risk; LLR: log likelihood ratio

Year Cluster time frame Observed Expected RR LLR P value

2011 June 2011‒November 2011 263,791 217,413.54 1.54 10,001.22 0.001

2012 June 2012‒October 2012 191,492 156,514.83 1.46 6616.78 0.001

2013 June 2013‒September 2013 103,288 74,790.01 1.71 7765.72 0.001

2014 June 2014‒September 2014 69,368 50,870.66 1.67 4818.10 0.001

2015 June 2015‒September 2015 47,765 34,955.17 1.67 3361.85 0.001

2016 June 2016‒July 2016 13,924 9154.33 1.70 1327.50 0.001

2011‒2016 January 2011‒October 2013 1,001,309 634,364.34 3.27 207,689.62 0.001
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through plots of the spline functions for each variable 
(Fig. 6). Annual reported P. falciparum cases were high-
est in townships with a mean elevation of approximately 
500–600  m (Fig.  6) and high variance (i.e., townships 
with both high and low elevations). There was an associa-
tion between reported vivax malaria cases and elevation 
as well, but the peak association was at a slightly higher 
elevation (700–800  m). There was an apparent linear 
relationship between mean EVI and annual P. falciparum 
cases (Fig. 6), but not with P. vivax cases at the township 
level. There was a decrease in overall P. falciparum and 

P. vivax cases over the years, though the decrease was 
steeper for falciparum malaria and curvilinear for vivax 
malaria [first increasing until 2013 and then decreasing 
each year after (Fig. 6)].

Discussion
Our findings showed that malaria incidence reduced in 
Myanmar from 2011 to 2017. There was significant spa-
tial autocorrelation in malaria cases and test positivity 
across the nation. Areas with higher malaria incidence 
were concentrated along international borders. Primary 

Table 5  Spatial-temporal high risk clusters of malaria cases detected using space–time Poisson model from 2011 to 2016

*Primary cluster; RR: relative risk; LLR: log likelihood ratio

Cluster Location Start date End date LLR RR Radius P value

1* 2 Jan 1, 2011 Dec 31, 2013 271,025.27 8.04 222.25 0.000

2 2 Jan 1,2011 Nov 30, 2013 118,977.23 3.32 230.75 0.000

Fig. 6  Results from the generalized additive model for environmental predictors of P. falciparum and P. vivax cases at the township level. Where a 
spline and its confidence intervals fall above zero (blue and yellow line in figures), there is a positive association, and where they fall below zero 
(blue and yellow line in figures), there is a negative association. The x-axis gives the value for the variable in question
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clusters of P. falciparum malaria persisted in western 
townships, while clusters of P. vivax shifted geographi-
cally over the study period. Malaria cases were higher 
in townships with a mean elevation of 500‒600  m and 
falciparum cases were associated with higher levels of 
vegetation.

In this study, we used an array of analytic approaches 
to explore spatial and temporal patterns of malaria API 
and test positivity based on P. falciparum and P. vivax 
data aggregated at the township or state/region level 
from 2011 to 2017 in Myanmar. The NMCP categorizes 
geographic locations based on reported case incidence 
levels (API), with three overarching categories that have 
corresponding public health approaches: less than 1 per 
1000 people per year (pre-elimination), 1 to less than 10 
per 1000 people per year (moderate transmission), and 
above 10 per 1000 people per year (high transmission) 
[25]. Our findings showed that more than 50% of town-
ships reached malaria pre-elimination by 2017.

The reported P. falciparum API maintained a continu-
ous decline throughout the study period, which may be 
mainly related to increased access to diagnoses and 
treatment with artemisinin-based combination thera-
pies (ACT) [26]. However, the reported vivax malaria 
API showed a more gradual decline, probably associated 
with the intrinsic biological features of P. vivax, including 
relapses induced by hypnozoites [27], missed diagnosis 
because of the low density of infection, lower accuracy 
from widely used rapid diagnostic tests [28], the early 
production of gametocytes favoring continuous trans-
mission, and the high proportion of asymptomatic infec-
tions [29].

Some patterns with vivax malaria may be related to the 
increased roll-out of rapid diagnostic tests that detect 
both falciparum and vivax malaria (the first rapid diag-
nostic tests were only capable of detecting falciparum 
malaria). This roll-out corresponds to the initial increase 
in vivax malaria cases up to 2013 when they began to 
decrease (apparent in Fig. 1) and could be related to an 
increased capacity for diagnosing vivax malaria. A few 
studies have also shown that vivax malaria relapses fol-
lowing the treatment of falciparum malaria [30, 31]. It is, 
therefore, possible that widespread increased treatment 
of falciparum malaria partially drove the short increase 
of reported vivax malaria cases prior to their decline in 
2013. Complete cure of vivax malaria is hindered by the 
risk of hemolysis in glucose-6-phosphate dehydroge-
nase deficient (G6PDd) individuals post primaquine and 
other 8-aminoquinoline antimalarials. This region has 
a high prevalence of G6PD deficiency along the China-
Myanmar border (16.9%) and Thailand–Myanmar border 
(13.7%) [32, 33], as well as in western and central Myan-
mar (10% and 6.8%, respectively) [34, 35]. The need for 

primaquine to radically cure vivax malaria, coupled with 
the risk of treating G6PDd patients and the difficulties in 
diagnosing G6PD deficiency in field settings, remains a 
challenge for adequately addressing this malaria species.

The apparent declines in the API and test positivity of 
P. falciparum and P. vivax malaria from 2011 to 2017 in 
Myanmar may be illustrative of the impact of combined 
efforts by governmental and non-governmental organi-
zations to eliminate malaria in the nation [36, 37]. Pre-
vious studies showed significant associations between 
declining reported cases and the following factors: long-
lasting insecticidal net/insecticide-treated bed net dis-
tribution, indoor residual spraying, the concentration of 
village health workers, amount of health worker training, 
development of volunteers, socioeconomic status, and 
improved ACT availability [36, 38–43].

Our analyses also showed malaria to peak and cluster 
temporally from approximately May and into Novem-
ber. This corresponds with the rainy season in Myan-
mar, and the pattern has been well-described in several 
other studies [14, 44]. A second peak was apparent in 
some high burden states/regions (especially Rakhine and 
Chin states). This pattern has likewise been described in 
other locations but has not been fully explained. It may 
correspond to differences in human-mosquito exposure 
that are related to seasonal agriculture-the second peak 
often corresponds with rice harvesting season [45, 46], 
with changes in mosquito abundance [47], or other fac-
tors such as decreased mosquito net use after the rains 
have ceased [48].

Malaria exhibited significant spatial clustering during 
the study period as well. We found clustering of P. falci-
parum in the western and northern parts of Chin State, 
Kachin State, and Sagaing Region. From the Poisson 
model, we found that primary and secondary clusters of 
P. falciparum also persisted in the northern and west-
ern regions of Myanmar. Although the sizes and loca-
tions of P. falciparum clusters became gradually smaller 
over time, the cluster locations were relatively stable 
in the western and northern regions [36, 49]. A recent 
study found P. falciparum was the predominant species 
accounting for more than 80% of all infections in Paletwa 
Township of Chin State [46]. Conversely, primary and 
secondary clusters of P. vivax malaria changed over the 
seven-year study period. The maps of incidence and test 
positivity demonstrate that high-burden areas of P. vivax 
malaria tend to migrate west to east. In the last three 
years of the study period, P. vivax clustered in eastern 
Kachin State bordering China and southern Shan State 
and Kayah State bordering Thailand. Previous studies 
showed P. vivax is the predominant species along many 
of these international borders [29, 50, 51].
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Spatial patterns in malaria can be largely driven by 
environmental factors that vary across landscapes [52, 
53]. Forested areas have long been associated with 
malaria in Southeast Asia [54, 55]. The hilly and moun-
tainous areas along the international borders have had 
less economic development, at least partially, as a result 
of long-standing conflict in these areas. Changes in envi-
ronmental attributes (such as forest cover) and other 
socioeconomic factors can lead to changes in the bur-
den of malaria [56]. In this study, we did not limit our 
measures of EVI or NFI to specific months. Instead, we 
took the mean value for each year of the study period. If 
there is a positive association in the model, the interpre-
tation would then be that a higher mean annual value of 
EVI in a given year is associated with a higher number of 
malaria cases, etc. It is true that most cases occur during 
the rainy season, however in several locations there are 
double peaks—with the second peak occurring outside 
of the normal rainy season. Partially for this reason, and 
likewise because the model is analyzing data that have 
been aggregated yearly, we prefer to have environmen-
tal measures that include but are not limited to the rainy 
season.

Our analyses showed that malaria cases were highest 
in townships with a mid-level elevation (mean eleva-
tion of approximately 500‒600  m) and that falciparum 
cases were associated with high levels of vegetation 
(measured using EVI). The latter corresponds to the 
well-known macro associations between forests and fal-
ciparum malaria. While malaria elimination efforts have 
increased in the last decades in Myanmar, deforestation 
has also increased [57], and both may impact malaria 
transmission.

This study has a few limitations. The data might not 
be accurate for some years since the data were mainly 
derived from government health centers and the pro-
gram’s village malaria volunteers. With regard to the tem-
poral trends, it is noteworthy that the coverage of health 
care facilities has improved drastically in Myanmar over 
the last several years. For example, many community-
based health clinics were set up in Kayin State (beginning 
around 2014 and 2015). The increase in malaria diagno-
sis and surveillance at first might give an impression of 
increased cases when in fact it is the result of increased 
diagnosis. We control for the influence of testing through 
the test positivity metric and by including the number of 
tests in our regressions. However, we cannot control for 
missing data (either through problems with surveillance 
systems or from a sparsity of clinics in some regions). 
Likewise, we do not have data on the proportions of 
tests that were done using RDTs or microscopy and 
the data are at aggregate levels meaning that we cannot 
perform detailed analyses of demographic risk factors. 

Furthermore, since our data and analyses are limited to 
Myanmar, it is possible that some of the patterns we see 
are obscured along the edges of the map. It is possible 
that we are missing hotspots and coldspots of malaria 
that would be apparent if we had corresponding data 
from neighboring nations (this is a type of ‘edge effect’).

Another potential limitation is related to the envi-
ronmental variables included in our models. While we 
are confident that our model results indicate true asso-
ciations between environmental variables and either 
falciparum or vivax malaria cases, other environmen-
tal variables could be included in similar analyses. For 
example, while we chose to use EVI this measure of veg-
etation would not necessarily differentiate forests from 
other kinds of vegetation. Since our a priori goal was not 
to look for associations between forests and malaria, we 
chose this more inclusive variable instead of measures 
that would be specific to forests.

Another limitation is the deficiency of monthly data, 
which were only available at the state/region level from 
2011 to 2016. More granular data (i.e., at the village or 
village tract level) would be superior. Lastly, the coup in 
2021 and COVID-19 pandemic (beginning in 2020) have 
disrupted many malaria control and elimination efforts. 
From passive case surveillance in Laiza town in Kachin 
State along the China-Myanmar border, malaria cases 
declined from 2016 to 2019 but increased rapidly begin-
ning in 2020 [58]. This suggests that local governments 
or organizations should resume malaria surveillance and 
implementation of interventions as soon as possible. 
Meanwhile, the bordering countries should pay attention 
to the importation of malaria cases.

Conclusion
This study describes spatial and temporal patterns of 
malaria incidence across the entire nation of Myanmar 
over a 7-year period (2011–2017). We describe an over-
all reduction in both falciparum and vivax malaria, which 
is likely driven at least partially by enhanced malaria 
elimination and control efforts during this same period. 
Deforestation and socioeconomic factors may likewise 
explain part of this reduction. However, malaria contin-
ued to cluster in some locations (falciparum malaria in 
the northwest, vivax malaria in the northeast), and these 
clusters could act as reservoirs for rebounds in other 
regions if vigilance is not maintained. Unfortunately, the 
SARS-CoV-2 (beginning in 2020) pandemic and the mili-
tary coup in 2021 have disrupted many of these efforts. 
To achieve elimination, it will be necessary to resume 
heightened control and elimination efforts, and likely will 
require tailored approaches to address the complications 
of eliminating vivax malaria.
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