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Abstract 

Background  The heterogeneity of COVID-19 spread dynamics is determined by complex spatiotemporal transmis-
sion patterns at a fine scale, especially in densely populated regions. In this study, we aim to discover such fine-scale 
transmission patterns via deep learning.

Methods  We introduce the notion of TransCode to characterize fine-scale spatiotemporal transmission patterns of 
COVID-19 caused by metapopulation mobility and contact behaviors. First, in Hong Kong, China, we construct the 
mobility trajectories of confirmed cases using their visiting records. Then we estimate the transmissibility of individual 
cases in different locations based on their temporal infectiousness distribution. Integrating the spatial and temporal 
information, we represent the TransCode via spatiotemporal transmission networks. Further, we propose a deep trans-
fer learning model to adapt the TransCode of Hong Kong, China to achieve fine-scale transmission characterization 
and risk prediction in six densely populated metropolises: New York City, San Francisco, Toronto, London, Berlin, and 
Tokyo, where fine-scale data are limited. All the data used in this study are publicly available.

Results  The TransCode of Hong Kong, China derived from the spatial transmission information and temporal infec-
tiousness distribution of individual cases reveals the transmission patterns (e.g., the imported and exported transmis-
sion intensities) at the district and constituency levels during different COVID-19 outbreaks waves. By adapting the 
TransCode of Hong Kong, China to other data-limited densely populated metropolises, the proposed method outper-
forms other representative methods by more than 10% in terms of the prediction accuracy of the disease dynamics 
(i.e., the trend of case numbers), and the fine-scale spatiotemporal transmission patterns in these metropolises could 
also be well captured due to some shared intrinsically common patterns of human mobility and contact behaviors at 
the metapopulation level.

Conclusions  The fine-scale transmission patterns due to the metapopulation level mobility (e.g., travel across differ-
ent districts) and contact behaviors (e.g., gathering in social-economic centers) are one of the main contributors to 
the rapid spread of the virus. Characterization of the fine-scale transmission patterns using the TransCode will facilitate 
the development of tailor-made intervention strategies to effectively contain disease transmission in the targeted 
regions.

Keywords  COVID-19, Densely populated regions, Spatiotemporal transmission dynamics and heterogeneity, Meta-
population, Human mobility and contact behaviors, TransCode, Deep transfer learning

Background
Coronavirus disease 2019 (COVID-19) has rapidly 
spread worldwide since January 2020. As of Decem-
ber 5, 2022, more than 639 million cases and more 
than 6.6 million deaths have been confirmed by the 
World Health Organization (WHO) [1]. Understanding 
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disease transmission dynamics is essential for develop-
ing and implementing appropriate intervention strat-
egies to effectively control the COVID-19 pandemic 
[2–9]. However, COVID-19 transmission dynamics are 
difficult to capture and quantify due to geographic (e.g., 
metropolises and regions) and temporal (e.g., days, 

weeks, or months) heterogeneity. As shown in Fig. 1a, 
COVID-19 dynamics differ in the seven representative 
metropolises (New York City, San Francisco, Toronto, 
London, Berlin, Tokyo, and Hong Kong, China) inves-
tigated in this study. Moreover, the dynamics within 
each metropolis show clear temporal heterogeneity; the 

Fig. 1  Global COVID-19 transmission dynamics. a The subfigures display the daily infection dynamics in seven representative metropolises: New 
York City, San Francisco, Toronto, London, Berlin, Tokyo, and Hong Kong, China. b The detailed COVID-19 transmission dynamics in Hong Kong, 
China. The left box shows the city-level daily infection curve (pink) and 18 district-level daily infection curves (grey). The right box displays the 
cross-district transmission network that we aim to infer in this study. Each node of the network denotes a district, with darker colors representing 
districts with higher transmission risks. The links between nodes denote the cross-district transmission intensity, with darker colors representing 
higher transmission intensities
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outbreak wave durations range from days to months, 
and the wave peaks (in terms of daily infection num-
bers) vary from dozens to hundreds and from thou-
sands to tens of thousands.

The heterogeneity of disease dynamics is determined 
by complex spatiotemporal transmission patterns at a 
fine scale [9–14], especially in densely populated regions. 
Figure 1b (left) displays the COVID-19 transmission pat-
terns in Hong Kong, China at a fine scale (the district 
level). The fine-scale transmission patterns dramatically 
vary in both spatial and temporal dimensions, as dem-
onstrated by the diversity among the grey curves (which 
show the district-level daily infections) in the top left 
of Fig.  1b. Moreover, Fig.  1b (right) shows the complex 
interactions among districts, representing human mobil-
ity and contact behaviors at the metapopulation level, 
which are further analyzed and discussed in later sec-
tions. The spatiotemporal variability and complex inter-
actions across different districts, although central to the 
understanding of disease transmission, are difficult to 
capture and quantify.

To understand disease transmission dynamics to facili-
tate effective disease control, we need to answer a criti-
cal question: How can we quantitatively characterize 
the underlying spatiotemporal transmission patterns 
of COVID-19 at the metapopulation level to accurately 
capture transmission dynamics and predict future risks, 
especially in densely populated regions? Specifically, we 
have to address two technical challenges:

1.	 How can we uncover and represent fine-scale cross-
district transmission patterns using available data?

2.	 How can we adapt the transmission patterns to other 
regions where fine-scale data are limited?

Existing measurements or statistics of disease dynam-
ics, such as the basic reproduction number R0 or the 
daily infection number, can provide an overall evalua-
tion of disease transmission severity in a specific region 
[15–18]. However, such coarse measurements conceal a 
considerable amount of spatial heterogeneity and tempo-
ral variability at fine resolutions (e.g., the district level in 
a city), which are crucial for depicting disease dynamics. 
Several recent works have recognized the importance of 
characterizing fine-scale transmission patterns [19–24]. 
However, these works mainly have focused on qualita-
tive characterizations, such as spatial heterogeneity at the 
tract level [19–21] or transmission clusters within differ-
ent scenarios [19, 22–24]. Without establishing a clear 
quantitative connection between fine-scale transmission 
patterns and city-level disease dynamics, it is still unclear 
how fine-scale information may be useful for quantifying 
and inferring disease dynamics.

In addition to investigating disease transmission 
from an epidemiological perspective, some research-
ers have modeled and inferred disease dynamics using 
computational methods. These methods can be catego-
rized into two categories: mechanism-based methods 
and data-driven methods. Mechanism-based methods 
simulate disease dynamics by assuming that transmis-
sion follows some pre-defined models (e.g., mechanism 
or compartment models), which are determined using a 
set of ordinary differential equations (ODEs) [9, 25–29]. 
Mechanism-based methods have improved the quanti-
tative characterization of disease transmission; however, 
ODE-governed assumptions might not hold in reality, 
thus limiting the practical applicability of such methods. 
Although some works [27–29] have incorporated human 
mobility data into ODEs to yield predictions, the analyses 
were conducted at the city level and lacked the considera-
tion of fine-scale information. Data-driven methods (e.g., 
deep learning methods) [14, 30, 31] generally use his-
torical data (e.g., infection numbers) to train models for 
future predictions. However, these methods do not incor-
porate fine-scale transmission information, resulting in 
inaccurate and unexplainable prediction results, espe-
cially when available data for model training is limited. 
Some other methods adopt transfer learning to improve 
the accuracy of prediction in data-limited regions [32–
34]. Gautam et al. directly utilize the data obtained from 
data-rich countries (in which the epidemic dynamics are 
similar to those in data-limited countries) to train the 
prediction model and use the trained model to predict 
the number of cases and deaths in data-limited coun-
tries [32]. Kong et  al. adopt similar transfer strategies, 
with an integration of other disease-related factors (e.g., 
demographic, geographic, and behavioral features) [33]. 
Li et al. implement the transfer learning by first training 
the model using data from source countries (data-rich 
regions) and then fine-tuning model parameters using 
data from data-limited regions (target countries) [34]. 
However, these methods focus on country-level predic-
tion and thus are not suitable for fine-scale transmission 
modeling.

To address these challenges, we propose to uncover 
the fine-scale spatiotemporal transmission patterns 
of COVID-19, which we name “TransCode,” to cap-
ture transmission dynamics and predict future infec-
tion risks. To quantitatively characterize the TransCode, 
we first construct the mobility trajectories of confirmed 
cases using their visiting records. We then estimate the 
transmissibility of individual cases in different locations 
based on their temporal infectiousness distribution. Inte-
grating the spatial and temporal information, we rep-
resent the TransCode via spatiotemporal transmission 
networks. Figure 1b (right) shows an example of such a 
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transmission network in Hong Kong, China where the 
nodes and edges represent the districts and cross-district 
transmission intensities, respectively.

Further, we propose a deep transfer learning model to 
adapt the TransCode to achieve fine-scale transmission 
characterization and risk prediction in regions where 
fine-scale data are limited. First, we match the disease 
dynamics of source region (data-rich region) and those of 
target region (data-limited region) via temporal segmen-
tation and clustering to determine the most appropriate 
period from the source region for TransCode adaptation. 
Second, we develop a deep transfer learning model with a 
source module and a target module. The source module 
extracts features from the spatiotemporal transmission 
networks of the selected period of the source region and 
feeds the extracted features into the target module. The 
TransCode of the target region is obtained by minimizing 
the objective functions (i.e., the prediction errors) of both 
modules of the deep transfer model. Finally, we provide a 
theoretical analysis to guarantee the performance of the 
developed model.

To validate the effectiveness of TransCode for repre-
senting fine-scale transmission dynamics and predicting 
disease transmission risks, we conduct extensive experi-
ments on seven densely populated metropolises: New 
York City, San Francisco, Toronto, London, Berlin, Tokyo, 
and Hong Kong. The TransCode of Hong Kong, China 
derived from the spatial transmission information and 
temporal infectiousness distribution of individual cases 
reveals the transmission patterns (e.g., the imported and 
exported transmission intensities) at the district and 
constituency levels during different COVID-19 outbreak 
waves. The high-risk constituencies predicted using the 
TransCode correspond to areas where compulsory test-
ing was implemented by the government and infection 
cases were detected, validating the usability of TransCode 
for risk prediction and potential case identification.

Finally, we evaluate the adaptability of the TransCode 
of Hong Kong, China to the other six metropolises, 
where fine-scale visiting records of individual cases are 
not available. By adapting the TransCode of Hong Kong, 
China to these cities, we find that, although the trans-
mission dynamics of these cities appear heterogeneous, 
they share some intrinsically common patterns of human 
mobility and contact behaviors at the metapopulation 
level. As a result, the adapted TransCode reflects the 
fine-scale spatiotemporal transmission patterns in these 
data-limited metropolises. Moreover, the proposed deep 
transfer learning model that incorporates the adapted 
TransCode outperforms state-of-the-art machine learn-
ing methods in transmission risk prediction, further 
demonstrating the capacity of the TransCode to uncover 
spatiotemporal transmission patterns. Characterization 

of the fine-scale transmission patterns (e.g., transmission 
distributions and imported/exported transmission risks 
of different districts) using the TransCode will facilitate 
the development of tailor-made intervention strategies 
to effectively contain disease transmission in the targeted 
regions.

Methods
Data collection and processing
The following data were collected to investigate COVID-
19 transmission patterns in Hong Kong, China and con-
struct the TransCode. First, we collected the confirmed 
COVID-19 case data in all 18 districts from January 23, 
2020 to February 14, 2021, from the resources provided 
by the Department of Health, Hong Kong SAR Govern-
ment [35]. The onset date, report date, and the build-
ings that the confirmed case visited in the 14 days before 
the case confirmation date were recorded for each case. 
We collected the latitude and longitude of each build-
ing using the Google Geocoding API and identified the 
constituency that each building belongs to using the con-
stituency area shapefile, with the latitudes and longitudes 
of the constituency boundaries included. We collected 
relevant data from the official websites of the other six 
metropolises: New York City [36], San Francisco [37], 
Toronto [38], London [39], Berlin [40], and Tokyo [41]. 
These data contained the daily case numbers at the city 
and district/borough levels. The spatial resolutions of 
these cities are provided in the Additional file 1.

TransCode construction
To characterize the transmission patterns at the meta-
population level, we start by measuring the transmis-
sibility of a single case, which is assumed to follow the 
infectiousness distribution [51]. Specifically, for any two 
locations (i.e., constituencies) p and q in a case mobility 
trajectory (e.g., p = 3 and q = 1 on the top left of Fig. 2a) 
on the same day, assuming that constituency p (corre-
sponding to the fourth visit of the individual) was visited 
before constituency q (corresponding to the fifth visit of 
the individual), we use the difference between the visit 
date and the onset date as the infectiousness distribution 
input (Fig.  2a, bottom left) to infer the individual case 
transmissibility from p to q . By calculating the individual 
case transmissibility for all constituency pairs, we obtain 
the cross-constituency transmission network for that 
case (represented as a matrix with the size N × N  , where 
N  denotes the number of constituencies; Fig. 2a, right). 
Next, we aggregate the transmission matrices of all cases 
to form the cross-constituency transmission matrix (i.e., 
the constituency-level TransCode) at the metapopulation 
level (Fig. 2b, left). Finally, we construct the cross-district 
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transmission matrix (i.e., the district-level TransCode) 
by identifying the district that each constituency belongs 
to and summating all elements in the constituency-level 
matrix within that district block (Fig.  2b, right). The 
detailed construction and calculation methods are intro-
duced as follows.

Transmissibility of individual cases
We construct the disease transmission networks in 
Hong Kong, China using the spatiotemporal informa-
tion of individual cases. From the visiting records of 
confirmed cases, we calculate the disease transmissibil-
ity of a single case from constituency i to j using the 
following equation:

where stij represents the transmission intensity of one 
case from location i to j ; Dist(•) is the infectiousness 
distribution of confirmed cases in terms of the number 
of days before or after symptom onset, which is inferred 
using the temporal transmission patterns of 77 infec-
tor–infectee pairs [51]; Donset is the date of onset; and 
Dvisit is the visiting date from constituency i to j . In 
asymptomatic cases, there are no explicit onset date 
records. Therefore, we use the serial interval distribution 
to describe infectiousness and set the report day as the 
onset day, defining the serial interval as the length of time 
between the symptom onset dates of consecutive cases in 
transmission chains. We use the difference between the 

(1)stij = Dist(Dvisit − Donset),

Fig. 2  TransCode construction. a Calculating the transmissibility of a single case according to the individual’s visiting records (left). The closer the 
visiting date to the onset date, the higher the transmissibility. The case’s cross-constituency transmission matrix is obtained by calculating the 
transmissibility of the individual case for all constituency pairs (right). b The cross-constituency transmission matrix (i.e., the constituency-level 
TransCode) at the metapopulation level is formed by aggregating the transmission matrices of all individual cases (left). The cross-district 
transmission matrix (i.e., the district-level TransCode) is obtained by identifying the district that each constituency belongs to and summating all 
elements in the constituency-level matrix within that district block (right)
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visiting date and the onset date as the input for the dis-
tribution function to calculate the infectiousness of indi-
vidual cases.

Individual transmissibility aggregation for TransCode 
construction
For all confirmed cases, the total transmissibility from 
constituency i to j is calculated as follows:

where Nij is the number of visits (contributed by all 
cases) from constituency i to j . The ST ij is the ( i, j)th 
element of the constituency-level transmission matrix 
(network), i.e., the constituency-level TransCode. Hong 
Kong, China has 452 constituencies, so the size of the 
matrix is 452 × 452. We then summate all elements in the 
district block to obtain the 18 × 18 district-level trans-
mission matrix. For instance, the district-level transmis-
sion intensity from district E (Yau Tsim Mong, with 20 
constituencies) to H (Wong Tai Sin, with 25 constituen-
cies) is represented by the summation of all elements in 
this 20 × 25 block.

Transmission intensity prediction via TransCode
To validate the TransCode, we use a Gaussian process 
model [52] with deep kernel to infer the future trans-
mission intensity of different constituencies and identify 
constituencies with potential transmission risk, i.e., those 
with high exported transmission intensity. For the pre-
diction task, let T ∈ R

1×D represent the exported trans-
mission intensity of a constituency in D consecutive days, 
which is a time series. We split the data into the training 
set, which comprises the first L days’ data (i.e., T[1:L] ), and 
the test set, which comprises the last (D − L) days’ data 
(i.e., T[L+1:D] ). We then formulate the time series predic-
tion as the following regression problem:

where ε denotes the noise that follows the zero-mean 
normal distribution, σ 2 is the variance of the noise, f (•) 
is the mapping function, and wt∈ R

1×P and ot∈ R
1×Q are 

the input and output of the function f (•) for the time 
step t , respectively. In our case, wt represents the past P 
days’ transmission intensity, and ot represents the next Q 
days’ intensity that is to be predicted. In this study, we set 
P = 14 and Q = 1 , i.e., we use the transmission intensity 
of the last two weeks to predict the intensity of the next 
day. For simplicity, we omit the subscript of wt and ot in 
the following description.

f (•) follows a Gaussian process, denoted as 
f (•) ∼ GP(µ(•),K (•)) , where µ(•) and K (•) denote the 
mean function and the covariance function, respectively:

(2)ST ij = 1−
∏Nij

n=1

(

1− Dist(Dvisit − Donset)n
)

,

(3)ot = f (wt)+ ε, ε ∼ N
(

0, σ 2
)

,

We follow the standard setting [45] to set µ(w) = 0 and 
use the deep kernel kdeep(•) as the covariance function:

where GRU denotes the gated recurrent unit [43], a deep 
structure for sequence modeling, and v is the coefficient 
of the deep kernel, which is determined automatically 
during the model training procedure.

We denote the parameter set of the learning model as 
δ . To infer the δ that best fits the training data, we aim 
to minimize the negative log marginalized likelihood 
(NLML) as follows:

where �δ = K δ + σ 2I , with K δ being the covariance 
(kernel) matrix and I being the identity matrix, and 
W ∈ R

P×(L−P−Q) and o ∈ R
(L−P−Q)×Q are constructed 

from the training set. The parameters of the deep struc-
ture and kernel function are jointly optimized using the 
above objective function. We denote the transmission 
intensity that we aim to predict as o∗ ∈ R

(D−L−P−Q)×Q 
and the corresponding historical intensity used for pre-
diction as W ∗∈ R

p×(D−L−P−Q) . Then o∗ is predicted as 
follows:

TransCode adaptation
To evaluate the usability of the TransCode, we conduct a 
comprehensive investigation on six representative metrop-
olises with high population densities: New York City, San 
Francisco, Toronto, London, Berlin, and Tokyo. Because 
the fine-scale (district-level) trajectory/visiting records of 
infection cases are not available in these cities, it is diffi-
cult to directly construct spatiotemporal transmission 
networks. To address this challenge, we propose a deep 
transfer learning model to adapt the TransCode of Hong 
Kong, China to those cities. Specifically, we consider Hong 
Kong, China as the source city and the other six metropo-
lises as target cities. Adapting the TransCode from the 
source city to the target cities involves two phases: (1) 
transmission labeling and (2) deep transfer learning.

For the transmission labeling phase, we first parti-
tion the city-level case dynamics of the target city into 
multiple temporal segments (i.e., periods) via temporal 

(4)µ(w) = E f (w) ,

(5)K (w,w) = E
(

(

f (w)− µ(w)
)(

f (w)− µ(w)
)T

)

.

(6)kdeep(w,w) = v
(

GRU(w)TGRU(w))
)

,

(7)
NLML = −lnp(o|GRU(W ), δ) = 1

2o
T�−1

δ o+ 1
2 lndet�δ +

n
2 ln2π ,

(8)o∗ = k
(

GRU(W ∗),GRU(W )
)T

(K δ + σ 2I)
−1

o.
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clustering. We then identify the source city segment most 
similar to each segment of the target city, allowing us to 
label the segments of the target city using the segments 
of the source city. The transmission labeling procedure is 
shown in Fig. 3a. After labeling the temporal segments of 
the target city, we use deep transfer learning to adapt the 
source city TransCode to the target city.

The deep transfer learning model is composed of a 
source module and a target module. First, the source 
module extracts features from the TransCode, i.e., the 
transmission network, of the selected temporal segment 
of the source city. Second, the features extracted from the 
source city TransCode are fed into the target module to 
generate the target city TransCode. By minimizing the 
objective functions (i.e., the prediction errors) of both 
modules of the deep transfer learning model, we expect 
that the target city TransCode can characterize the fine-
scale transmission patterns, thus providing accurate 
predictions of transmission risks in the target city. The 
proposed deep transfer learning procedure for TransCode 
adaptation is illustrated in Fig.  3b; the technical details 
are provided in as follows. To guarantee the validity of the 
proposed model, we provide a theoretical analysis, dis-
cussing the conditions for TransCode adaptation. Please 
refer to the Additional file 1 for more information.

Hierarchical aligned cluster analysis for transmission 
labeling
Before adapting the TransCode of the source location 
to the target location, we partition the city-level case 
sequence of the target location into several segments via 
temporal clustering (i.e., mean-shift clustering [46]) and 
label each segment using the most similar segment from 
the case sequence of the source city (Hong Kong, China). 
The selection is based on the hierarchical aligned cluster 
analysis [44]. Given a =

[

a1, . . . ana
]

∈ R
1×na being the 

segment of the target city and b = [b1, . . . bnb ] ∈ R
1×nb 

being the case sequence of the source city, the similarity 
function between a and b is defined as follows:

where U ∈ R
na×nb is the cumulative kernel matrix 

initialized from the upper left, i.e., u1,1 = 2k1,1 , and 
kij = exp(−

�ai−bj�
2

2σ 2 ) is the radial basis function kernel. 
In our study, we set σ = 1 . The similarity is calculated 
between the segment of the target city and all subse-
quences of the source city’s case sequence. The subse-
quence of the source city with the highest similarity is 
selected as the label for the target city’s segment.

(9)τ(a, b) =
unanb
na+nb

,uij = max







ui−1,j + kij
ui−1,j−1 + 2kij
ui,j−1 + kij

,

Deep transfer learning model for TransCode adaptation
The proposed deep transfer learning model comprises a 
source module and a target module. Both modules have 
a two-layer structure to capture information from the 
coarse and fine scales, respectively. Specifically, the first 
layer in both modules captures dynamics at the coarse 
scale, i.e., the city level. The second layer in the source 
module and the target module extracts features from the 
source city (Hong Kong, China) TransCode and the fine-
scale case trend of the target city, respectively.

In both modules, we use the neural process structure 
[47] in the first layer and the GRU structure in the sec-
ond layer. We transfer the information extracted from the 
source module to the target module by incorporating the 
learned hidden representations of the source city’s disease 
transmission matrix and the feature representations of the 
target city’s fine-scale case trend so as to benefit the case 
prediction of the target city. In the first layer of the source 
module, the hidden representation is given as follows:

where 
∑m

i=1 ri,s =
∑m

i=1 Encodersource−1

(

xi,s, yi,s
)

 is the 
aggregation (denoted as ⊗ in Fig. 3) of the encoder’s out-
put of each context sample, the Encodersource−1 denotes 
the multi-layer perceptron (MLP) with 5 layers, hs is 
the output of the Encodersource−2 (1 layer GRU) in the 
second layer of the source module, and ⊕ is the concat-
enation operator (Fig.  3). The approximate posterior 
of zs , denoted as q(zs|•) , follows a normal distribution 
N (µz,s, σ z,s) and is parameterized by rs . Here, the mean 
µz,s is parameterized by a neural network NNµ(rs) , i.e., 
µz,s = NNµ(rs) , with NNµ(•) being a single-layer per-
ceptron without activation function, and the variance 
σ z,s is parameterized by a neural network NNσ , i.e., 
σ z,s = NNσ (rs) , with NNσ (•) being another single-layer 
perceptron without activation function. The zs is the hid-
den state that is concatenated with 

{

xi,s
}

i=m+1,..,n
 for the 

prediction of 
{

yi,s
}

i=m+1,..,n
 . The target module structure 

is similar to that of the source module. In the first layer of 
the target module, the feature representations extracted 
from the source city TransCode are integrated with 
representations of the target city disease transmission: 
rt = Encodertarget−1

(

xi,t , yi,t
)

⊕ ht ⊕ hs . Here, ht is the 
Encodertarget−2 (1 layer GRU) output in the second layer 
of the target module and is transformed into the shape of 
(ddays × ddistrict)× ddistrict , where ddays is the number of 
days of data used for training, and ddistrict is the number 
of districts in the target city.

Four categories of data are used as the deep transfer 
learning model input. We distinguish the categories using 
subscripts: (1) For the case trends in the source city at the 
coarse scale, we organize the data as input and output 

(10)
rs =

(
∑m

i=1 ri,s
)

⊕ hs =
(
∑m

i=1 Encodersource−1

(

xi,s, yi,s
))

⊕ hs,
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Fig. 3  The TransCode adaptation procedure. a Transmission labeling. The city-level case dynamics of the target city and the source city (left). 
Partitioning of the target city case dynamics via temporal clustering and matching of the most similar segment pairs from the target city and source 
city (middle). The transmission labeling results (right). b The proposed deep transfer learning model. The source module of the model (top). The 
city-level case dynamics and the district-level TransCode of the source city are the input of the coarse-scale encoder and the fine-scale encoder, 
respectively. The fine-scale encoder extracts temporal features from the input and feeds the extracted features into the target module to infer the 
TransCode of the target city. The target module of the model (bottom). The city-level case dynamics and district-level case dynamics of the target 
city are the input of the coarse-scale encoder and the fine-scale encoder, respectively. By integrating the feature representations provided by the 
source module, the target module infers the target city TransCode and predicts the future transmission dynamics of the target city
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pairs for the model training and test. For the case trend 
data, we use a sliding window dwindow (which is set to 
14  days in our study) to generate a set of sam-
ples

{

(xi,s, yi,s)
}

i=1,...,n
 , where xi,s is a dwindow-dimensional 

vector that contains the case number (averaged) in con-
secutive dwindow days, yi,s is the case number on the fol-
lowing day, and n is the number of sample pairs. (2) For 
the fine-scale TransCode in the source city, we treat the 
temporal sequence of each element in the matrix as a 
time series and generate a set of samples for those time 
series using the sliding window introduced before. We 
aggregate the samples for all elements as the set denoted 
as 

{

(x
f
i,s, y

f
i,s)

}

i=1,...,nf
 , where nf  is the number of sample 

pairs. (3) For the case trends in the target city at the 
coarse scale, the sample set with l sample pairs, denoted 
as
{

(xi,t , yi,t)
}

i=1,...,l
 , is generated using the sliding win-

dow. (4) For the case trends in the target city at the fine 
scale, the sample set 

{

(x
f
i,t , y

f
i,t)

}

i=1,...,lf
 with lf  sample 

pairs is generated using the sliding window on all of the 
districts’ case trends.

According to the training requirement of the neural 
process structure, the city-level samples are split into 
two sets: the context sample set and the target sample 
set. Using the coarse-scale case trends of the source 
city as an example, we use the first m samples as the 
context samples and the remaining samples as the tar-
get samples, i.e., the context samples are denoted as 
{

(xi,s, yi,s)
}

i=1,...,m
(m < n ), and the target samples are 

denoted as 
{

(xi,s, yi,s)
}

i=m+1,...,n
 . We aim to predict 

{

yi,s
}

i=m+1,..,n
 , denoted as 

{

y∗i,s
}

i=m+1,..,n
 , by giving the 

input of the target samples 
{

xi,s
}

i=m+1,..,n
 and the con-

text samples 
{

(xi,s, yi,s)
}

i=1,...,m
 . Similarly, for the target 

city, we use the first c samples as the context samples 
and the remaining samples as the target samples.

The overall objective function of the developed deep 
transfer learning model for TransCode adaptation is as 
follows:
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where y
f ∗

t  and y
f ∗

s  are the model predictions of 

y
f
t=

{

y
f
i,t

}

i=1,...,nf
 and y

f
s=

{

y
f
i,s

}

i=1,...,lf
 , respectively. 

For both modules, the first term is the loss of the neural 
process structure (i.e., the evidence lower bound [47]), 
and the second term is the mean squared error loss of the 
GRU structure. We use the Adam optimizer and set the 
learning rate to 0.0006. The rectified linear activation 
function (ReLU) is used for the model.

We conduct one-step-ahead predictions for durations 
of one week and two weeks. Finally, we calculate the 

MAE =
�y

f ∗

t −y
f
t �

ltest
 and RMAE =

�y
f ∗

t −y
f
t �

�y
f
t �

 between the pre-

dicted value and the ground truth to evaluate the predic-
tion accuracy.

Results
In this section, we present the TransCode development 
and adaptation results. First, we introduce the process 
of developing the TransCode, present the TransCode 
of Hong Kong, China at both the district and constitu-
ency levels, and analyze the efficacy of the TransCode 
for identifying high transmission risk locations. Then, we 
describe the TransCode adaptation procedure, illustrate 
and discuss the adaptation of the TransCode of Hong 
Kong, China to the other six metropolises, and finally, 
show the transmission risk prediction efficacy of the 
proposed deep transfer learning model with the adapted 
TransCode.

Developing the TransCode of Hong Kong, China
Four COVID-19 outbreak waves occurred in Hong Kong, 
China from January 23, 2020 to February 14, 2021 [2]: the 
first wave from late January to mid-February 2020; the 
second wave from March 17 to April 12, 2020; the third 
wave from July 5 to September 21, 2020; and the fourth 
wave from November 19, 2020 to February 14, 2021. As 
the duration, spatial scale, and infection peak of the first 
wave were much smaller than those of the later waves, we 
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do not consider this wave in our study, i.e., the TransCode 
is based on the second, the third, and the fourth wave data.

We illustrate the TransCode of the third COVID-19 
outbreak wave (period 2: July 5 to September 21, 2020) 
in Hong Kong, China at the district and constituency 
levels in Fig.  4. The cross-district transmission network 
is shown as a matrix on the bottom left of Fig.  4a, and 
the constituency-level transmission network (shown as 
matrix on the right of Fig. 4a) between two densely popu-
lated districts with the highest cumulative case numbers, 
Yau Tsim Mong (administrative code E) and Wong Tai 
Sin (administrative code H), is on the right. At both spa-
tial levels, the case number and the transmission intensity 
are unevenly distributed on different districts, and edges 
of the transmission network (non-diagonal elements of 
the matrix), respectively, which are indicated by different 
color intensities. This observation demonstrates the spa-
tial heterogeneity of disease transmission, validating the 
necessity of characterizing such fine-scale information to 
capture transmission dynamics.

Next, we create a chord diagram (Fig. 4b) to visualize 
the TransCode transmission dynamic details at both lev-
els. The districts with relatively high transmission inten-
sity in the TransCode are Yau Tsim Mong (E), Sham Shui 
Po (F), Kowloon City (G), Wong Tai Sin (H), Kwun Tong 
(J), and Sha Tin (R), consistent with the characteristics of 
these districts. For example, Kowloon City (G) includes 
many densely distributed old infrastructure/buildings, 
which present high infection risks to residents due to 
poor ventilation and old sewerage system. Furthermore, 
traditional Chinese tea restaurants (Cha Chaan Teng), in 
which people tend to stay and chat with each other for 
long periods without masks (morning/afternoon tea), 
are widespread in this district, representing a hotspot 
for disease transmission. Sham Shui Po (F) is the district 
with the lowest average household income and the high-
est percentage of older adults; several families often share 
a single small apartment, creating a high-risk environ-
ment for household transmission. In addition to the high 
transmission intensity, the TransCode shows that these 
districts also have more cross-district interactions with 
each other than with the remaining districts, matching 

well with the characteristics of these districts. For exam-
ple, Yau Tsim Mong (E) is a district with many shopping 
malls, tourist attractions, clubs, and restaurants for com-
mercial, entertainment, and travel activities. Yau Tsim 
Mong (E) is also the main transportation hub in Hong 
Kong, China, providing ample opportunity for cross-dis-
trict mobility and social gathering behaviors and enabling 
widespread COVID-19 transmission to and from this 
district.

To dive into the fine-scale (constituency-level) trans-
mission patterns, we select Yau Tsim Mong (E) and Wong 
Tai Sin (H) for further analysis. Although the case num-
bers in both districts are very high, their constituency-
level transmission patterns differ. In Yau Tsim Mong (E), 
most constituencies have high imported and exported 
transmission intensity. As shown in the two-layer 
heatmap in Fig.  4b, the constituencies with the high-
est exported transmission intensity are E01 (Tsim Sha 
Tsui West), E06 (Mong Kok West), E12 (Tai Nan), E13 
(Mong Kok North), E14 (Mong Kok East), E15 (Mong 
Kok South), E17 (East Tsim Sha Tsui & King’s Park), and 
E20 (Tsim Sha Tsui Central); the constituencies with the 
highest imported transmission intensity are E01, E13, 
and E15. The reason is that these constituencies have 
extremely high population densities and contain many 
social gathering venues, creating an opportune environ-
ment for close contact and COVID-19 transmission.

In contrast to the wide distribution of constituen-
cies with high-intensity transmission in Yau Tsim Mong 
(E), the district of Wong Tai Sin (H) has more concen-
trated patterns. Specifically, a single constituency, H18 
(Ching On), has much higher imported and exported 
transmission intensities than the other constituencies in 
this district, indicating spatially concentrated transmis-
sion during this period. This pattern is consistent with 
the real situation: several outbreaks occurred in the Tsz 
Wan Shan Shopping Centre, located in H18, from July 
14 to July 27, 2020, accounting for the high intensity 
on the corresponding edges of the constituency-level 
transmission network. By characterizing such fine-scale 
transmission patterns, the subtle variations overlooked 

Fig. 4  TransCode of the third wave (period 2) of COVID-19 outbreaks in Hong Kong, China. a The daily case numbers from January 23, 2020, to 
February 14, 2021, in Hong Kong, China (top left); period 2 is highlighted in pink. The district-level TransCode (i.e., the transmission network, which 
is shown as matrix) of period 2 (bottom left). The constituency-level TransCode of two representative districts [Yau Tsim Mong (E) and Wong Tai 
Sin (H)] (right). Darker colors on the matrices indicate higher case numbers within the district/constituency and higher transmission intensities 
between the districts/constituencies, respectively. b Chord diagram of the TransCode at the constituency level. The outermost bar charts show 
the cumulative case numbers in the 452 constituencies. Next to the bar charts, the two-layer heatmaps illustrate the exported (outside layer) 
and imported (inside layer) disease transmission intensities of each constituency, respectively. Red indicates high transmission intensity, and blue 
indicates low transmission intensity. Next to the heatmaps, the inner circle of the chord diagram is divided into 18 pieces, each a different color, 
representing the districts. The innermost connections show the disease transmission between different constituencies. The color of the edge shows 
the district to which the constituency belongs, and the width of the edge denotes the transmission intensity. Yau Tsim Mong (E) and Wong Tai Sin 
(H), two representative districts, are enlarged on the top right and bottom right, respectively

(See figure on next page.)



Page 11 of 20Ren et al. Infectious Diseases of Poverty           (2023) 12:14 	

Fig. 4  (See legend on previous page.)
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in coarse-scale overall case number reports can be cap-
tured, which is essential for accurately inferring the dis-
ease dynamics.

To validate the TransCode of Hong Kong, China, we 
use it and a computational method to identify the con-
stituencies where invisible transmission may exist. Invisi-
ble transmission, which is generally caused by unreported 
cases, is very difficult to detect. In our evaluation, we first 
quantify the daily transmission risk of a constituency by 
summating the daily transmission intensities exported 
from this constituency to all constituencies, including 
itself (i.e., conducting the row summation in the constit-
uency-level TransCode matrix; Fig. 5a), to obtain a time 
series of the daily transmission risk for each constituency. 
Next, we adopt a Gaussian process regression [42] with 
deep kernel, a representative machine learning model, to 
predict the future transmission risk of each constituency 
(Fig. 5b). A higher predicted transmission risk indicates a 
greater probability of invisible transmission. The details 
of the adopted method are reported in “Transmission 
intensity prediction via TransCode” section.

We use the period 3 data for training and testing. Spe-
cifically, we use the TransCode from November 19, 2020, 
to January 17, 2021 to train the Gaussian process regres-
sion model and predict the exported transmission inten-
sity from January 18 to January 24, 2021 using the trained 
model. We average the predicted intensities of each constit-
uency in these seven days to obtain the predicted risk for 
the corresponding constituency. We show the prediction 
results for the Yau Tsim Mong (E) district in Fig. 5c. Among 
the 20 constituencies in this district, Jordan North (E18) 
has the highest predicted transmission risk, which is con-
sistent with the fact that on January 23, 2021, compulsory 
testing was implemented in this constituency, and 13 cases 
were detected [56, 57]. This number is much higher than 

the number of cases identified in other constituencies dur-
ing the same week, confirming that the TransCode accu-
rately captured the disease transmission patterns.

TransCode adaptation to data‑limited metropolises
We show the district-level TransCodes (transmission net-
works) of six data-limited metropolises for the selected 
periods in Fig. 6. More comprehensive TransCode results 
of these six cities for all periods are provided in Addi-
tional file  1: Figs. S3–S8. We show the heterogeneity of 
disease transmission patterns between cities. For exam-
ple, Berlin and Tokyo have similar cumulative case num-
bers, and their case maps show that the confirmed cases 
are mainly distributed in regions with large populations, 
such as Mitte and Neukölln in Berlin and the metropoli-
tan area in Tokyo. However, the TransCodes in these two 
cities demonstrate different transmission patterns at the 
district level: disease propagation is concentrated in the 
eastern area of Tokyo but is relatively evenly distributed 
in Berlin. This observation from the TransCode is read-
ily explainable: the eastern area (metropolitan area) is the 
commercial and economic center of Tokyo, and trans-
portation between eastern and western Tokyo is not con-
venient, e.g., it takes more than two and half hours (by 
train and subway) to travel from Edogawa City (located 
near the eastern border of Tokyo) to Okutama Town 
(located near the western border of Tokyo). Therefore, 
disease transmission in Tokyo tends to be concentrated 
in the eastern area. In Berlin, Friedrichshain-Kreuzberg 
(marked by the red box in the center of the Berlin sub-
figure of Fig.  6) is the transmission hub, located in the 
center of Berlin and easily accessible from other districts 
(i.e., less than one hour of travel), facilitating the rela-
tively easy spread of COVID-19 throughout Berlin.

Fig. 5  TransCode validation. a Data processing procedure. Each row of the constituency-level TransCode matrix of a district is summated to form 
the exported transmission intensity of the corresponding constituency. b Gaussian process regression with deep kernel. The model uses the 
historical exported transmission intensity as the input and infers the future transmission risk of each constituency. c Transmission risk prediction 
results for the district Yau Tsim Mong (E). Darker colors indicate a higher predicted transmission intensity; the constituency Jordan North (E18) has 
the highest predicted risk
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Further, we can uncover more fine-scale transmission 
pattern details in these two cities by examining their 
TransCodes. Friedrichshain-Kreuzberg has the highest 
exported transmission risk in Berlin, which is not sur-
prising because this district has the highest population 
density of the 12 districts [61]. Moreover, Friedrichshain-
Kreuzberg has many inexpensive apartments and a lot 
of young residents; the many bars, cafes, and nightclubs 
lead to intensive social contacts for potential COVID-19 
spread. Meanwhile, Spandau (marked by the red box on 
the left of the Berlin subfigure of Fig.  6), located in the 
west of Berlin, has the smallest population but the high-
est imported transmission risk. This high transmission 
risk can be ascribed to the well-developed modern indus-
tries, such as chemical and electrical factories, that bring 
many people into this district for work, thus increasing 
the imported transmission risk in this district.

In the inferred Tokyo TransCode, we can observe clear 
temporal heterogeneity in addition to spatial heterogene-
ity between the eastern and western areas. We show the 
temporal clustering results of the Tokyo case dynam-
ics in Fig. 7a. The technique that generates the temporal 
clustering results was described in “Hierarchical aligned 
cluster analysis for transmission labeling” section. The 
sequence is segmented into four periods, demonstrating 
different temporal patterns. Period 4, which corresponds 
to the Tokyo Summer Olympics (July 23 to August 8, 
2021), shows much higher COVID-19 spread (in terms 
of the daily infection number) than periods 1–3. This 
observation is consistent with the results in other studies 

[62–65]. Lau et al. estimated that different countries, dur-
ing the Olympics period, would bring the imported risk 
to Tokyo [62], with the USA and UK having the highest 
probability for risk importation. A simulation study con-
ducted by Yoneoka et al. showed that the number of cases 
per million population on the final day of the Games 
would be more than double that in the hypothetical situa-
tion of the Olympics Games not being held in Japan [63]. 
Jung et al. and Zhu et al. assessed the risk by taking the 
effectiveness of vaccination into consideration and more 
restricted strategies are suggested [64, 65]. The district-
level TransCodes of these four periods in Tokyo, inferred 
by our deep transfer learning model are shown in Fig. 7b. 
The results are consistent with the city-level case dynam-
ics: the transmission intensity of the TransCode during 
the Olympic period (period 4, bottom right subfigure) 
is much higher than that during the other three peri-
ods. Specifically, the trend of case concentration in the 
eastern area is more obvious during the Olympic period 
than during periods 1–3. A possible reason is that ten 
competition venues for the Tokyo Olympics are located 
in this metropolitan area, attracting many local residents 
and foreign tourists to celebrate this international sports 
event and thus intensifying disease transmission in this 
area during the Olympic period.

In addition to inferring the TransCodes of the six 
metropolises by adapting the TransCode of Hong Kong, 
China, we also validate their effectiveness for predict-
ing disease dynamics (in terms of case numbers) at the 
district level. We compare our TransCode-enabled 

Fig. 6  The TransCodes adapted for New York City, San Francisco, Toronto, London, Berlin, and Tokyo during different periods. In each subfigure, 
the map shows the number of cumulative confirmed cases in each district during the corresponding period (darker colors indicate higher case 
numbers); the transmission network represents the uncovered or inferred TransCode. The network nodes correspond to the districts, and the 
directed network edges show transmission from one district to another (darker edge colors indicate higher transmission intensities)
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deep transfer learning model with four representative 
approaches designed for disease risk prediction or time 
series prediction: (1) the Susceptible-Exposed-Infectious-
Removed (SEIR) model [58], an ODE-based method 
for disease dynamics modeling; (2) the Mortality Risk 
Prediction Model for COVID-19 (MRPMC) [60], an 
ensemble machine learning model for disease predic-
tion; (3) a recent deep transfer learning model based 
on the long short-term memory (LSTM) network spe-
cifically designed for COVID-19 case trend prediction 
[31] (LSTM-T); and (4) the Informer [59], a state-of-
the-art deep learning model for time series prediction. 
We evaluate the results of the five methods (including 
our method) on two prediction tasks: one-week-ahead 

(7 days) prediction, and two-weeks-ahead (14 days) pre-
diction. The mean absolute error (MAE) and the relative 
MAE (RMAE) are used as evaluation metrics.

The prediction results of the five methods in six metrop-
olises are shown in Fig. 8 (MAE) and Fig. 9 (RMAE). The 
performance of the SEIR model is not satisfactory, possi-
bly because the real dynamics of disease transmission are 
too complicated to be fully captured by ODEs. The per-
formance of LSTM-T is not robust when the number of 
infected cases is low, e.g., period 1 in New York City and 
periods 3 in San Francisco and London. The LSTM-T 
transfers the city-level case dynamics of all three periods 
rather than the fine-scale spatiotemporal transmission 
networks of the most appropriate segment; thus, the 

Fig. 7  Results of temporal clustering of the case dynamics and the inferred TransCode for each period in Tokyo. a The sequence is partitioned into 
four periods, demonstrating different temporal patterns. The last segment is called the Olympic period because the Tokyo Summer Olympics were 
held during this period (July 23 to August 8, 2021), representing the main cause of this outbreak wave. b Visualization of the inferred TransCodes 
for four periods in Tokyo. In each subfigure, the map shows the number of cumulative confirmed cases in each district during the corresponding 
period (darker colors indicate higher case numbers); the transmission network represents the inferred TransCode. The network nodes correspond 
to the districts, and the directed network edges show transmission from one district to another (darker edge colors indicate higher transmission 
intensities)

Fig. 8  MAE of the district-level case number predictions of SEIR, MRPMC, LSTM-T, Informer, and our method in New York City, San Francisco, 
Toronto, London, Berlin, and Tokyo. a The MAE of one-week-ahead (7 days) predictions. b The MAE of two-weeks-ahead (14 days) predictions. Lower 
MAE values indicate better prediction performance. MAE: mean absolute error; SEIR: the Susceptible-Exposed-Infectious-Removed model [58]; 
MRPMC: Mortality Risk Prediction Model for COVID-19 [60]; LSTM-T: a long short-term memory network deep transfer learning model for COVID-19 
case trend prediction [31]; Informer: a state-of-the-art deep learning model for time series prediction [59]; and Our method: a deep transfer learning 
model with adapted TransCodes

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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transferred information does not represent the disease 
transmission characteristics of the target cities well. The 
MRPMC integrates several basic learning models, namely 
a linear regression, a support vector machine, a gradi-
ent boost decision tree, and a multi-layer perceptron, for 
ensemble learning. However, these basic models are insuf-
ficient for modeling sophisticated nonlinear data, and thus 
their ensemble may not be powerful enough to character-
ize the complex spatiotemporal dynamics of COVID-19 
transmission. The Informer, which boasts a powerful deep 
learning structure, achieves relatively good performance. 
However, the Informer only relies on target city data and 
does not exploit the useful information in the source city 
TransCode. By exploring the fine-scale spatiotemporal 
transmission patterns in the source city and adapting the 
TransCode to the target cities using a deep transfer archi-
tecture, our method achieves the best performance among 
the five methods in all scenarios, demonstrating that the 
TransCode effectively captures transmission dynamics 
and predicts future risks. More details of the experimental 
results are provided in the Additional file 1.

Discussion
Coarse-scale case dynamics may not be sufficient to sup-
port the implementation of tailor-made interventions 
because they do not reflect complex transmission patterns. 
Locations (e.g., cities or districts) with similar cumulative 
case numbers can have heterogeneous fine-scale transmis-
sion patterns that require different intervention strategies. 
For instance, the Yau Tsim Mong (E) district and the Wong 
Tai Sin (H) district have high confirmed case numbers dur-
ing the period from July 5 to September 21, 2020. How-
ever, the constituency-level transmission patterns of these 
two districts differ: transmission is evenly distributed in 
Yau Tsim Mong, whereas Wong Tai Sin has more concen-
trated outbreaks in a specific constituency. Thus, constitu-
ency-specific transmission patterns should be considered 
when planning intervention measures. For example, more 
general policies, such as mandatory masking and social 
distancing, could be implemented for the entire popula-
tion of Yau Tsim Mong, while specific strategies, such as 
small-scale compulsory testing and quarantines, could 
be adopted in the Wong Tai Sin constituencies with high 
transmission risks.

In addition to transmission distribution patterns, the 
TransCode unveils the details of disease spread patterns, 

such as the imported and exported transmission risks, 
which can inform public health decision-making. For 
locations with high imported transmission risk, such as 
Hachioji in Tokyo, intervention measures, such as body 
temperature testing, Vaccine Passes (i.e., proof of vaccina-
tion), and rapid antigen testing, could be implemented to 
prevent disease importation. For places with high exported 
transmission risk, such as Setagaya during the Olympic 
period, policies to prohibit large-scale social gatherings 
could be immediately implemented to limit local outbreaks 
and disease exportation.

Building upon the TransCode developed for Hong 
Kong, China, the success of TransCode adaptation 
illustrates the potential for mining fine-scale disease 
transmission patterns in locations with limited data 
availability. The TransCode adaptations reveal some 
intrinsic commonalities between the transmission pat-
terns in densely populated regions, even when the 
disease dynamics of these regions appear heterogene-
ous on a coarse scale. We use a deep transfer learning 
model to adapt the TransCode developed for data-rich 
regions to infer the fine-scale transmission patterns of 
COVID-19 in targeted data-limited regions. The suc-
cessful adaptation of the TransCode of Hong Kong, 
China to six other metropolises in this study demon-
strates the potential for TransCode application in other 
densely populated regions.

Limitation of the study
The TransCode and the deep transfer learning model 
developed in this paper are useful and generalizable for 
uncovering fine-scale disease transmission patterns, 
and we demonstrated their effectiveness in seven rep-
resentative metropolises on three continents. How-
ever, when applying the TransCode to other regions, 
region-specific factors, such as local human mobility 
and social contact patterns, should be taken into con-
sideration to achieve accurate characterization of trans-
mission patterns.

Moreover, as empirically shown and theoretically 
guaranteed, TransCode adaptation can be effective even 
when the coarse-scale disease dynamics of the source 
region and target region differ. However, the premise of 
TransCode adaptation success is the intrinsically com-
mon or similar transmission-triggering factors shared 

(See figure on next page.)
Fig. 9  RMAE of the district-level case number predictions of SEIR, MRPMC, LSTM-T, Informer, and our method in New York City, San Francisco, 
Toronto, London, Berlin, and Tokyo. a The RMAE of one-week-ahead (7 days) predictions. b The RMAE of two-weeks-ahead (14 days) predictions. 
Lower RMAE values indicate better prediction performance. RMAE: relative mean absolute error; SEIR: the Susceptible-Exposed-Infectious-Removed 
model [58]; MRPMC: Mortality Risk Prediction Model for COVID-19 [60]; LSTM-T: a long short-term memory network deep transfer learning model 
for COVID-19 case trend prediction [31]; Informer: a state-of-the-art deep learning model for time series prediction [59]; and Our method: a deep 
transfer learning model with adapted TransCodes
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Fig. 9  (See legend on previous page.)
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by the source and target regions. For example, Hong 
Kong, China and London, two metropolises investi-
gated in this study, have similar population densities 
and well-developed public transportation systems. 
Moreover, both cities are global financial centers. As a 
result, the human mobility and contact behaviors and 
social activity patterns in these two cities are analo-
gous, ensuring the effectiveness of the TransCode adap-
tation. Thus, similarities and differences between the 
source and target regions should be taken into account 
when adapting the TransCode to data-limited regions.

Conclusions
To tackle the challenging issue of characterizing the fine-
scale spatiotemporal transmission patterns of COVID-19 
in densely populated regions, we propose the notion of 
TransCode and adapt it via a novel deep transfer learning 
model. The step-by-step demonstration and analysis in the 
Results Section show that the TransCode reveals the under-
lying transmission patterns of COVID-19 at the fine-scale 
in Hong Kong, China and the TransCode of Hong Kong, 
China can be adapted to characterize transmission patterns 
and predict transmission risks in other densely populated 
metropolises with limited data availability, and thus facilitat-
ing the accurate implementation of COVID-19 intervention 
strategies by uncovering the fine-scale transmission patterns 
in specific regions. In the future, we plan to extend our work 
from two perspectives. First, we aim to reach a finer scale for 
the characterization, e.g., blocks or buildings, for the purpose 
of more precise and effective control. Furthermore, we will 
take underdeveloped regions/countries into consideration, 
where the data scarcity problem presents more challenges.
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