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Abstract 

Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect 
on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the manage-
ment of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such 
biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also 
be released into the circulatory system and have been associated with the progression of many chronic diseases 
including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for 
chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is per-
formed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by review-
ing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most 
representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain 
several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer 
treatments.

Keywords:  miRNA, microRNA, Cardiotoxicity, Breast cancer, Chemotherapy, Anthracycline

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Cardiomyopathies and cardiovascular diseases are 
well-known side effects of the principle chemotherapy 
agents used against breast cancer (BC) such as anthra-
cyclines, monoclonal antibodies, alkylating agents and 

anti-metabolites [1, 2]. As cancer treatment outcomes are 
improving, progressive cardiac dysfunctions can impact 
post-treatment survival times [3, 4] to the extent that, fol-
lowing chemotherapy treatment, the risk of death is dou-
bled compared to non-cancer sufferers and this figure is 
expected to continue increasing with time [4]. There are 
several established cardiotoxicity risk factors, such as the 
type of chemotherapy agent, the cumulative dosage and 
the infusion regime, in addition to patient-related fac-
tors such as age, female sex and any pre-existing cardiac 
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or cardiovascular conditions [5]. BC patients are at con-
siderable risk of chemotherapy-induced cardiotoxicity 
(CIC) through the use of agents such as anthracyclines 
and HER2-directed monoclonal antibodies although 
this could be reduced if identified and managed from 
the outset of treatment [6]. Anthracycline-associated 
cardiotoxicity can cause injury and death of cardiomyo-
cytes leading to Left Ventricular Dysfunction (LVD) 
which produces symptoms consistent with heart failure 
and is often irreversible [7]. Biomarkers of cardiotoxicity 
include cardiac troponins I and T (cTnI, cTnT), which are 
released through myocyte necrosis and the N-terminal 
prohormone of brain natriuretic peptide (NT-proBNP) 
which is linked to cardiac strain [8]. Elevated levels of 
these biomarkers have been noted in cardiovascular con-
ditions including cardiotoxicity but require establish-
ing baseline values and repeated measurements [9]. The 
monitoring of such biomarkers in an oncology setting has 
not been widely adopted although it is recommended for 
the management of cancer patients and to initiate cardio-
protective treatments where required [10].

Cardiotoxicity is the result of a series of complex reac-
tions to a chemical agent involving mechanisms such as 
metabolic disorders, oxidative stress, mitochondrial dys-
function, calcium overload, myocardial fibrosis and cardi-
omyocyte autophagy [11, 12]. Over 200 genes have been 
identified within the pathway of anthracycline metabo-
lism and transport including several genetic variations 
affecting cardiotoxicity risk [13]. However, the dynamics 
of the relationships between chemotherapy treatments 
and cardiotoxicity pathways are highly complex and the 
significance of some of these genetic variations are still 
largely unknown [11]. Changes in gene expression can be 
regulated by several types of non-coding RNA (ncRNA) 
consisting of long-non coding RNA (lncRNA), circular 
RNA (circRNA) and microRNA (miRNA) [14]. microR-
NAs are short (17–24 nucleotide) RNA sequences which 
act as modifiers of gene expression by preferentially bind-
ing to messenger RNA (mRNA) transcripts either in the 
3′-untranslated region (UTR) or coding sequence, lead-
ing to inhibition of mRNA translation, protein synthesis 
and promoting mRNA degradation [15]. Binding of miR-
NAs to functional mRNA transcripts can be imprecise, 
involving seed sequences of only 6–8 nucleotides [16] 
meaning that each miRNA can have multiple mRNA tar-
gets, potentially influencing several genes and functional 
pathways [17]. There are over 2000 miRNAs identified so 
far in humans and a nomenclature of numbers and letters 
prefixed with “miR” has been established based primar-
ily on order of discovery and orthologs in other species 
[18]. In the cell cytoplasm, miRNAs go through a pro-
cess of maturation with the Dicer RNAse III endonucle-
ase enzyme which lead to subtle differences in their RNA 

sequences leading to groups of very similar miRNAs, 
termed families, which may or may not have similar or 
overlapping functions and mRNA targets [16]. Identical 
mature miRNAs can also originate from different areas of 
the genome, for example, miR-7-1 (chromosome 9) and 
miR-7-2 (chromosome 15). miRNAs can be further clas-
sified into isomirs which are changes in sequence length 
or nucleotides at the 3′ or 5′ ends, sometimes with modi-
fications to function and targets [19].

Whilst miRNAs are active within the cytoplasm, they 
can also be secreted into vesicles (exosomes), bound to 
proteins or lipids and enter the circulatory system where 
they may potentially facilitate cellular communications 
[20]. As indicated in Fig. 1, many types of cell within the 
cardiovascular system including cardiomyocytes, fibro-
blasts, vascular smooth muscle cells and endothelial cells 
can release exosomes containing microRNAs [21]. More-
over, several types of blood cells including erythrocytes, 
platelets, leukocytes and megakaryocytes can also release 
miRNAs [22, 23] which makes the analysis of blood sam-
ples problematic unless prepared carefully [24]. As dys-
regulation of miRNAs has already been associated with 
many severe diseases [25], these extracellular miRNAs 
are of great interest as biomarkers due to their properties 
of being potentially disease-specific, stable, quantifiable 
and easily extracted from a range of clinical samples [26]. 
In this manuscript we review the potential of microRNAs 
(miRNAs) as biomarkers for chemotherapy-induced car-
diotoxicity in BC patients.

Methods
A systematic literature review was carried out using the 
PRISMA methodology [27]. The databases of PubMed, 
Cochrane Central, Embase, Scopus and Google Scholar 
were systematically searched with the terms ‘chemother-
apy induced cardiotoxicity’, ‘breast cancer’, ‘biomarkers’, 
‘microRNA’, ‘anthracycline’, ‘trastuzumab’, ‘doxorubicin’ 
and ‘epirubicin’. The search was restricted to articles in 
English between the years of 2000–2022 and only con-
sidered miRNAs linked to cardiotoxicity in clinical stud-
ies of breast cancer patients. Review papers, letters and 
editorial articles as well as studies in animal models and 
stem cells were excluded. This search resulted in 922 
papers of which 166 were considered relevant and were 
studied at the abstract level by two authors (CB, AA). 
From these articles, eight were examined in full and 
selected for inclusion in this manuscript.

In order to further clarify the function of each of the 
miRNAs shortlisted by the review in other cardiovas-
cular conditions, the literature was further searched for 
human clinical studies on each individual miRNA quali-
fied by the terms ‘mir’, [‘miR number’], ‘microRNA’, ‘car-
dio*’, ‘coronary’, ‘heart’, ‘human’. This review of miRNA 
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functions was limited to only clinical studies in cardio-
vascular diseases, where a significant change in expres-
sion of the relevant miRNA was reported. A total of 656 
potentially relevant publications were screened and from 
these, 143 were selected based on their relevance. These 
titles were studied at the abstract level by two authors 
(CB, AA) and the papers selected were examined in full 
by both authors. Review papers, letters and editorial arti-
cles as well as studies in animal models and stem cells 
were excluded. A total of 104 articles were studied in full 
and from these, 90 were selected for inclusion.

Figure  2 shows the PRISMA diagram for the litera-
ture review as a whole with 1578 papers being identified, 
from which 309 were shortlisted and 112 reviewed in 

full. Based on the criteria outlined above, 98 papers were 
selected for inclusion in this manuscript.

Results
Clinical studies of breast cancer patients indicate that 
dysregulation of several miRNAs have been noted follow-
ing anthracycline treatment [28–35], as summarised in 
Table 1. Many of the miRNAs examined were related to 
functions associated with cardiac damage such as apop-
tosis, hypertrophy and inflammatory responses which 
suggests that they could be used as potential biomarkers 
for the incidence of anthracycline induced cardiotoxicity. 
Table 1 is divided into four sections based on the strength 
of evidence for changes in expression in breast cancer 

Fig. 1  Schematic of circulatory miRNAs. A Exosomal microvesicles can be released by several types of cell within the cardiovascular system and 
enter into the circulatory system. B The biogenesis of miRNAs: i) biogenesis begins in the cell nucleus with the transcription of the DNA into large 
pri-miRNAs which are cleaved by the Drosha enzyme into pre-miRNAs that can be transported into the cytoplasm, ii) The Dicer enzyme cleaves the 
pre-miRNA into immature miRNA duplexes of 21 to 25 nucleotides and then to a single stranded mature miRNA, iii) miRNAs can be incorporated 
into a RNA-induced silencing complex (RISC) which can bind or partially-bind to mRNA and inhibit translation or promote degradation, iv) 
pre-miRNAs and mature miRNAs can be secreted from the cell in exosomes or lipid vesicles as well as bound to RNA-binding proteins and 
lipoproteins. C microvesicles can enter the circulatory system where they can be detected from blood samples (and other bodily fluids) for the 
purposes of prognosis, diagnosis and as therapeutic targets
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patients after chemotherapy. Section A includes miRNAs 
which have been reported statistically significant in only 
one study, Section B includes miRNAs which have been 
reported statistically significant and replicated in other 
studies whether significant or not. Section C includes 
miRNAs which have been reported as statistically non-
significant and in Section D those miRNAs are reported 
which although were found to have statistically signifi-
cant findings, they also showed contradictory expression 
change directions in independent studies.

The evidence from Table 1 indicates that of the 33 miR-
NAs investigated in these clinical studies, only 14 can be 
considered as potentially informative for study of car-
diotoxicity as they have some indication of a significant 
change in expression and no contradictory results in rep-
licated studies (Table 1, Sections A and B). The remaining 
19 miRNAs have either no evidence of significant expres-
sion changes in cardiotoxicity or contradictory evidence 
of the direction of the expression change and were not 
considered further.

Within all the clinical studies reviewed, the number of 
patients diagnosed with cardiotoxicity was low, reaching 

a maximum of 20 patients. As shown in Table 2, the iden-
tification of cardiotoxicity was predominantly based on 
reductions in left ventricular ejection fraction (LVEF) 
during or after chemotherapy based on echocardiograms, 
which conforms to the European Society of Cardiology 
diagnostic methodology for identifying cardiotoxicity 
[5]. Other indicators of cardiotoxicity such as heart fail-
ure and acute coronary syndrome were rare, whereas, 
fatal arrythmias were more common but identified in 
only one study. The use of cardiac Troponin levels to 
establish cardiotoxicity was used by one study (Table 2). 
Exclusion criteria for patients in all the studies included 
a prior history of cardiovascular events such as coronary 
heart disease, myocardial infarction and heart failure as 
well as metastatic breast cancer, severe hepatic or renal 
dysfunction and pregnancy. Three studies included prior 
chemotherapy or radiotherapy as an exclusion criterion, 
however, no study provided information for exposure to 
radiation therapies prior to or during the study period.

The pool of informative markers (Table  1, section A 
and B) was investigated individually in the literature to 
identify significant changes in expression linked to other 

Fig. 2  PRISMA schema [26] for the systematic review of literature
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Table 1  List of microRNA’s targeted by studies of breast cancer patients displaying cardiotoxicity following treatment with 
Anthracyclines and comparison of expression with control groups

MicroRNA Reference Subjects (Healthy 
Controls/ 
Chemotherapy 
group)

Treatment Period Tested Expression 
Change to Control 
group

Differential 
Expression

Proposed Role

Section A

  hsa-miR-29a-3p [33] 17/17 DOX 6 months Increased + 5 RE Cardiac repair

  hsa-miR-199a-3p [28] 38/7 NAC 2 cycles Increased + 1.2 FC Cardiomyocyte 
regeneration

  hsa-
miR-1273 g-3p

[34] 20/20 AC PT Decreased −0.52Log2ΔCt Regulatory function 
of TGF-β pathway

  hsa-miR-4638-3p [34] 20/20 AC PT Decreased −1.37 Log2ΔCt Regulatory function 
of TGF-β pathway

Section B

  hsa-miR-34a-5p [33] 17/17 DOX 6 months Increased + 40 RE Cardiac repair

[28] 38/7 NAC 2 cycles Increased + 24.3 FC

[32] 44/12 DOX 3 months No significant 
change

–

[32] 14/18 EPI 3 months No significant 
change

–

  hsa-miR-1 [31] 46/10 DOX 4 cycles Increased + 2Log2FC Cardiac hypertrophy

[28] 38/7 NAC 3 months No significant 
change

–

[32] 44/12 DOX 3 months No significant 
change

–

[32] 14/18 EPI 3 months No significant 
change

–

  hsa-miR-17-5p [29] 170/9 EC-D 8 cycles No significant 
change

– Pro-angiogenic

[30] 346/19 EC-D 8 cycles Decreased 0.213 OR

  hsa-miR-19a [29] 170/9 EC-D 8 cycles Increased + 2.1 RE Pro-angiogenic

[30] 346/19 EC-D 8 cycles No significant 
change

–

  hsa-miR-122-5p [32] 44/12 DOX 3 months Increased + 3 ΔΔCt Coronary disease

[32] 14/18 EPI 3 months No significant 
change

–

  hsa-miR-130a [29] 170/9 EC-D 8 cycles No significant 
change

– Cardiomyopathy

[30] 346/19 EC-D 8 cycles No significant 
change

–

[35] 60/12 EC-D + T 15 months Increased + 4 RE

  hsa-miR-378 [29] 170/9 EC-D 8 cycles No significant 
change

– Pro-angiogenic

[30] 346/19 EC-D 8 cycles Decreased 0.278 OR

  hsa-miR-423 [28] 38/7 NAC 3 months Increased + 1.3 FC Progressive heart 
failure

[31] 46/10 DOX 4 cycles No significant 
change

–

[33] 17/17 DOX 6 months Increased + 6.5 RE

  hsa-miR-499 [32] 44/12 DOX 3 months Increased + 2 ΔΔCt Acute myocardial 
infarction

[28] 38/7 NAC 3 months No significant 
change

–

[32] 14/18 EPI 3 months No significant 
change

–

[33] 17/17 DOX 6 months Increased + 15 RE
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Table 1  (continued)

MicroRNA Reference Subjects (Healthy 
Controls/ 
Chemotherapy 
group)

Treatment Period Tested Expression 
Change to Control 
group

Differential 
Expression

Proposed Role

  hsa-miR-885-5p [32] 44/12 DOX 3 months Increased + 2 ΔΔCt Liver toxicity

[32] 14/18 EPI 3 months No significant 
change

–

Section C

  hsa-Let-7b [29] 170/9 EC-D 8 cycles No significant 
change

– Pro-angiogenic

[30] 346/19 EC-D 8 cycles No significant 
change

–

  hsa-miR-17-3p [29] 170/9 EC-D 8 cycles No significant 
change

– Cardiac hypertrophy

[30] 346/19 EC-D 8 cycles No significant 
change

–

  hsa-miR-18a [29] 170/9 EC-D 8 cycles No significant 
change

– Oncogenic inhibitor

[30] 346/19 EC-D 8 cycles No significant 
change

– in breast cancer

  hsa-miR-19b-1 [29] 170/9 EC-D 8 cycles No significant 
change

– Inflammatory

[30] 346/19 EC-D 8 cycles No significant 
change

– response

  hsa-miR-92a [29] 170/9 EC-D 8 cycles No significant 
change

– Pro-angiogenic

[30] 346/19 EC-D 8 cycles No significant 
change

–

  hsa-miR-133a [28] 38/7 NAC 3 months No significant 
change

– Acute myocardial 
infarction

  hsa-miR-133b [31] 46/10 DOX 4 cycles No significant 
change

– Acute myocardial

[28] 38/7 NAC 3 months No significant 
change

– infarction

  hsa-miR-146a [31] 46/10 DOX 4 cycles No significant 
change

– Inflammatory 
response

  hsa-miR-208a [28] 38/7 NAC 3 months No significant 
change

– Cardiomyocyte

[31] 46/10 DOX 4 cycles No significant 
change

– damage

  hsa-miR-208b [28] 38/7 NAC 3 months No significant 
change

– Cardiomyocyte

[31] 46/10 DOX 4 cycles No significant 
change

– damage

  hsa-miR-296 [29] 170/9 EC-D 8 cycles No significant 
change

– Angiogenesis

[30] 346/19 EC-D 8 cycles No significant 
change

–

Section D

  hsa-miR-20a [29] 170/9 EC-D 8 cycles Increased + 1.1 RE Pro-angiogenic

[30] 346/19 EC-D 8 cycles Decreased 0.264 OR

  hsa-Let-7f [29] 170/9 EC-D 8 cycles Increased + 1.1 RE Pro-angiogenic

[30] 346/19 EC-D 8 cycles Decreased 0.228 OR
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cardiovascular diseases and are discussed in detail below 
and summarised and in Table  3. A total of 90 relevant 
studies were identified reporting significant expression 
changes in these specific miRNAs. Several miRNAs were 
associated with a wide variety of cardiovascular condi-
tions and have been studied extensively often with a 
broad agreement in expression direction. Where differ-
ences occur, they may be related to the disease or to the 
methodology employed, for example, some studies report 
miRNA expression from tissue samples rather than blood 
plasma which are known to often diverge. Three miRNAs 
(miR-885, 1273 and 4638) were not associated with any 
cardiovascular conditions in the literature to date and, 
therefore, they were not considered suitable for the final 
panel of informative miRNAs (Fig. 3).

Hsa‑miR‑1
miR-1 is highly expressed in cardiac myocytes and is 
associated with regulating angiogenesis, cell apoptosis 
and endothelial functioning. It has a regulatory role on 

many genes such as the heat shock protein 60 (HSP60), 
Kruppel-like factor 4 (KLF4), Cyclin-dependent kinase-9 
(Cdk9), histone deacetylase 4 (HDAC4), SRY-Box tran-
scription factor (SOX6), Frizzled class receptor (FZD7) 
and fibroblast growth factor receptor substrate 2 (FRS2) 
[124, 125]. In addition, it is connected with many tran-
scription factors including; myocardin, Nkx2.5, serum 
response factor (SRF), Wnt pathway, fibroblast growth 
factor (FGF) pathway and Heart and Neural Crest Deriv-
atives Expressed 2 (HAND2) [124, 125]. miR-1 influences 
the inflammatory cytokinase response through modulat-
ing KLF4 and NF-κB pathways as well as the TGF-β sig-
nalling pathway. miR-1 has been associated with a variety 
of cardiovascular conditions including: acute myocardial 
infarction [36–41], sudden cardiac death [42], micro-
vascular obstruction leading to failed myocardial rep-
erfusion [43], acute viral myocarditis [44], hypertrophic 
cardiomyopathy [45, 46], idiopathic dilated cardiomyo-
pathy [47], hypertrophic obstructive cardiomyopathy 
patients undergoing trans-coronary ablation of septal 

Table 1  (continued)

MicroRNA Reference Subjects (Healthy 
Controls/ 
Chemotherapy 
group)

Treatment Period Tested Expression 
Change to Control 
group

Differential 
Expression

Proposed Role

  hsa-miR-126 [29] 170/9 EC-D 8 cycles Increased + 1.5 RE Pro-angiogenic

[33] 17/17 DOX 6 months Increased + 28 RE

[30] 346/19 EC-D 8 cycles Decreased 0.358 OR

[28] 38/7 NAC 3 months Increased + 1.3 FC

  hsa-miR-210 [29] 170/9 EC-D 8 cycles Increased + 1.2 RE Pro-angiogenic

[30] 346/19 EC-D 8 cycles Decreased 0.475 OR

Part A: microRNAs with significant changes in expression with no independent replication, Part B: microRNAs with significant changes in expression and 
independent replication (whether significant or not), Part C: microRNAs with no significant changes in expression detected, Part D: microRNAs with contradictory 
evidence of direction of expression change in independent replication. Key: EC-D = Epirubicin + Cyclophosphamide (4 cycles) followed by Docetaxel (4 cycles), 
DOX = Doxorubicin, EPI = Epirubicin, NAC = Cyclophosphamide + Epirubicin (4 cycles) followed by Paclitaxel (9 to 12 weeks), AC = Anthracycline chemotherapy (not 
specified), PT = Post-treatment, RE = Relative Expression, FC = Fold Change, OR = Odds Ratio

Table 2  Characterisation of cardiotoxicity in breast cancer patients during or after chemotherapy for each of the reviewed studies

Key: EC-D = Epirubicin + Cyclophosphamide (4 cycles) followed by Docetaxel (4 cycles), DOX = Doxorubicin, EPI = Epirubicin, NAC = Cyclophosphamide + Epirubicin 
(4 cycles) followed by Paclitaxel (9 to 12 weeks), AC = Anthracycline chemotherapy (not specified), LVEF = Left ventricular ejection fraction
a one patient was diagnosed with heart failure after the study period

Reference [28] [29] [30] [31] [32] [33] [34] [35]

Cohort size 45 179 363 56 56/32 34 40 72

Treatment regime NAC ECD ECD DOX EPI/DOX DOX AC ECD-T

Assessment of Cardiotoxicity Heart failure 1a 1 0 0 0/0 0 0 0

Acute coronary syndrome 0 0 0 0 0/0 0 0 1

Fatal arrhythmias 0 9 0 0 0/0 0 0 0

Decline of LVEF ≥10% of 
baseline or below 53%

17 9 19 10 0/0 4 20 12

Elevated Troponin level 0 0 0 0 12/18 0 0 0
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Table 3  Supporting evidence for the informative microRNA’s from clinical studies of cardiovascular disorders, indicating the sample 
type, methodology, cardiovascular condition and the direction of miRNA expression

miRNA Reference Sample Type Evaluation Method Cardiovascular condition Expression 
Change to 
controls

miR-1-3p [36] Plasma qPCR Acute myocardial infarction Increased

[37] Serum + urine qPCR Acute myocardial infarction Increased

[38] Plasma NGS Acute myocardial infarction Increased

[39] Plasma qPCR Acute myocardial infarction Increased

[40] Plasma qPCR Acute myocardial infarction Increased

[41] Plasma qPCR Acute myocardial infarction Increased

[42] FFPE myocardial tissue qPCR Sudden cardiac death Increased

[43] Plasma NGS + qPCR Failed myocardial reperfusion Increased

[44] PBMC qPCR Acute viral myocarditis Increased

[45] Plasma qPCR Hypertrophic cardiomyopathy Increased

[46] Cardiac tissue qPCR Hypertrophic cardiomyopathy Decreased

[47] Endomyocardial biopsies qPCR + microarray Dilated cardiomyopathies Increased

[48] Serum qPCR Transcoronary ablation of septal hyper-
trophy (TASH)

Increased

[49] Myocardial tissue NGS Tetralogy of Fallot Decreased

[50] Plasma qPCR Takotsubo cardiomyopathy Increased

[51] PBMC qPCR Hypertensive heart disease Increased

[52] Plasma qPCR Non-ST elevation myocardial infarction 
(NSTEMI)

Increased

[53] Plasma qPCR Acute coronary syndrome Increased

[54] Right arterial appendage biopsies + 
Plasma

qPCR Atrial fibrillation Increased

[55] Myocardial tissue qPCR + miRNA array Atrial fibrillation Increased

[56] Myocardial tissue qPCR Heart failure Decreased

[57] Serum qPCR Heart failure Decreased

[58] Plasma qPCR Acute heart failure Decreased

miR-17-5p [59] Plasma qPCR Acute coronary syndrome Increased

[60] Plasma dPCR Coronary artery disease Increased

[61] Plasma qPCR Heart failure Decreased

[62] Plasma qPCR Hypertrophic cardiomyopathy Increased

[63] Whole blood qPCR Bicuspid aortic valve disorder Decreased

miR-19a [64] Lung tissue microarray Pulmonary arterial hypertension Increased

[65] Serum qPCR Acute coronary syndrome Increased

[66] Serum microarray Atherosclerosis Increased

miR-29a-3p [67] Ascending aorta tissue qPCR Bicuspid aortic valve disorders Decreased

[68] Serum qPCR Hypertrophic cardiomyopathy Increased

[69] Serum qPCR Hypertrophic cardiomyopathy Increased

[62] Plasma qPCR Hypertrophic cardiomyopathy Increased

[70] Plasma NGS + FirePlex assay Coronary heart disease Increased

[71] Plasma qPCR Coronary heart disease Increased

[72] Cardiac valve tissue qPCR Valvular heart disease Decreased

[73] Plasma qPCR Cardiac fibrosis Increased

[74] Plasma qPCR Left ventricular remodelling Increased

[75] Plasma qPCR Pulmonary arterial hypertension Increased
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Table 3  (continued)

miRNA Reference Sample Type Evaluation Method Cardiovascular condition Expression 
Change to 
controls

miR-34a-5p [76] Plasma qPCR Chronic heart disease Increased

[77] Whole blood qPCR Cardiac aging Increased

[78] Plasma qPCR Left ventricular (LV) remodelling Increased

[79] Plasma qPCR Left ventricular dysfunction Increased

[80] Plasma qPCR Heart failure Increased

[81] Serum qPCR Acute myocardial infarction Increased

[82] Serum qPCR Arterial fibrillation Increased

miR-122-5p [83] Serum qPCR Coronary artery disease Increased

[84] Plasma microarray + qPCR Acute coronary syndrome Increased

[85] Plasma qPCR Cardiogenic shock Increased

[86] Whole blood qPCR Cardiogenic shock Increased

[87] Plasma qPCR Ventricular fibrillation sudden cardiac 
arrest

Increased

[88] Plasma qPCR Chronic systolic heart failure Increased

[89] Plasma microarray Aortic valve dysfunction Decreased

[90] Ascending aorta tissue + plasma qPCR Bicuspid aortic valve disease Decreased

[91] Myocardial tissue NGS + qPCR Arrythmogenic cardiomyopathy Increased

[92] Serum qPCR Acute myocardial infarction Increased

[93] Serum microarray Congestive heart failure Increased

miR-130a [59] Plasma qPCR Acute coronary syndrome Increased

[94] Plasma qPCR Peripartum cardiomyopathy Increased

[95] Whole blood microarray Pulmonary hypertension Increased

[96] Plasma qPCR Coronary heart disease Decreased

[89] Plasma microarray Aortic valve dysfunction Increased

miR-199a-3p [97] Plasma qPCR Acute heart failure Decreased

[98] Right arterial appendage biopsies qPCR Postoperative atrial fibrillation Decreased

[99] Plasma qPCR Coronary heart disease Decreased

[100] Right arterial appendage biopsies qPCR Coronary heart disease Decreased

[101] Plasma qPCR Stable coronary artery disease Decreased

[102] Plasma qPCR Peripheral arterial disease Decreased

[103] Plasma microarray + qPCR Atrial fibrillation in HFrEF patients Increased

[104] Plasma NGS Acute myocardial infarction Increased

miR-378 [105] Plasma qPCR Coronary heart disease Decreased

[106] Whole blood microarray + qPCR Coronary artery disease Decreased
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hypertrophy (TASH) [48], the congenital heart malfor-
mation Tetralogy of Fallot [49], stress-related Takotsubo 
cardiomyopathy [50], hypertensive heart disease [51], 
geriatric patients with acute non-ST elevation myocardial 
infarction (NSTEMI) [52], acute coronary syndrome [53] 
and post-operative atrial fibrillation of coronary artery 
bypass patients [54, 55]. In contrast to upregulation of 
miR-1 in all of these cardiovascular conditions, consist-
ent downregulation of miR-1 has been noted in heart 

failure [56–58], which indicates a diversity of roles of this 
microRNA in the process of cardiac injury.

Hsa‑miR‑17
miR-17 forms part of a cluster of miRNAs’ (including 
miR-17-5p and -3p, miR-18a, miR-19a and b, miR-20a 
and miR-92a) with varied and significant roles in cancer 
and aging [126]. miR-17 has been shown to inhibit the 
transforming growth factor β (TGF-β) pathway which 

Table 3  (continued)

miRNA Reference Sample Type Evaluation Method Cardiovascular condition Expression 
Change to 
controls

miR-423 [107] Plasma qPCR Acute myocardial infarction Increased

[108] Plasma qPCR Dilated cardiomyopathy Increased

[109] Plasma microarray Heart failure Increased

[58] Plasma qPCR Acute heart failure Decreased

[110] Plasma qPCR Acute heart failure Increased

[111] Serum qPCR Coronary artery disease Decreased

[38] Plasma NGS Acute myocardial infarction Increased

[112] Plasma qPCR Acute myocardial infarction Increased

[113] Plasma qPCR Cardiogenic shock Increased

[114] Plasma qPCR Left ventricular remodelling Increased

[115] Serum qPCR Left ventricular remodelling Increased

[116] Whole blood microarray + qPCR Transposition of the great arteries Increased

[117] Serum qPCR Heart failure Increased

[80] Plasma qPCR Heart failure Increased

miR-499 [38] Plasma NGS Acute myocardial infarction Increased

[41] Plasma qPCR Acute myocardial infarction Increased

[118] Plasma qPCR Acute myocardial infarction Increased

[119] Whole blood qPCR Acute myocardial infarction Increased

[120] Serum dPCR+qPCR Stable coronary artery disease Increased

[40] Plasma qPCR Acute coronary syndrome Increased

[121] Plasma qPCR Acute coronary syndrome Increased

[115] Serum qPCR ST-segment-elevation myocardial 
infarction (STEMI)

Increased

[52] Plasma qPCR Non-ST elevation myocardial infarction 
(NSTEMI)

Increased

[122] Endomyocardial biopsies qPCR Dilated cardiomyopathy Increased

[123] PBMC qPCR Heart failure with preserved ejection 
fraction (HFpEF)

Increased

[42] FFPE myocardial tissue qPCR Sudden cardiac death Increased

[83] Serum qPCR Unstable coronary artery disease Increased

miR-885-5p No relevant associations

miR-1273 g-3p No relevant associations –

miR-4638-3p No relevant associations –

PBMC Peripheral blood mononuclear cells, FFPE Formalin-fixed paraffin-embedded tissue, NGS Next generation sequencing, qPCR Quantitative polymerase chain 
reaction, dPCR Digital polymerase chain reaction
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results in instability of atherosclerotic plaques in acute 
coronary syndrome [59] and coronary artery disease [60]. 
Another target of miR-17 is the connective tissue growth 
factor (CTGF) and thrombospondin-1 which affects 
myocardial fibrosis and significant expression of miR-17 
has been linked to heart failure [61] and hypertrophic 
cardiomyopathy [62]. Increasing the activity of matrix 
metalloproteinases (MMPs) by miR-17 leads to break-
down of the extracellular matrix (ECM) which is a key 
factor in bicuspid aortic valve disorder [63].

Hsa‑miR‑19a
miR-19a is strongly associated with several cancer types 
and even functions as an oncomir within the AKT-mTOR 
signalling pathway via silencing of the PTEN tumor sup-
pressor gene [126]. Upregulation of miR-19a has been 
associated with reducing the levels of the bone mor-
phogenetic protein receptor type II (BMPR2) linked to 
pulmonary arterial hypertension [64]. The HMG-Box 
Transcription Factor 1 (HBP-1) gene is a known target 
for miR-19a which leads to an increase in macrophage 
migration inhibiting factor (MIF) that links miR-19a 
overexpression to both acute coronary syndrome [65] 
and atherosclerosis [66].

Hsa‑miR‑29a
miR-29a is also part of a family of microRNAs’ which 
target a group of functionally related genes involved in 
apoptosis (Tcd1, Mcl1, p85a, CDC42, YY1, CDK6), cell 
differentiation (YY1, HDAC4), regulation of the extra-
cellular matrix proteins (Collegen (I, III, IV), LAMC1, 
FBN1, ELN, MMP2, ITGB1) and immune responses 
(B7-H3, Interferon-γ) [127]. In cardiovascular diseases it 
has been linked to bicuspid aortic valve disorders [67], 
hypertrophic cardiomyopathy [68, 69, 62], coronary heart 

disease [70, 71], valvular heart disease [72], cardiac fibro-
sis [73], left ventricular remodelling [74] and pulmonary 
arterial hypertension [75]. The levels of circulating miR-
29a are also thought to be linked to haemolysis of blood 
cells linked to certain cardiac pathologies rather than 
directly secreted only from the cardiomyocyte cells [128].

Hsa‑miR‑34a
The miR-34 family has a variety of functions relating to 
cancer, particularly in the p53 tumor suppressor path-
way [129] and it has been implicated in the processes of 
cardiac apoptosis, telomere attrition, DNA damage and 
inflammatory responses [130]. miR-34a influences lipid 
metabolism by inhibiting the Sirtuin 1 (SIRT1) pathway 
as well as stimulating pro-inflammatory cytokines such 
as IL-1b, IL-7A CRP and TNF-α which are strongly asso-
ciated with cardiovascular diseases [76]. Links between 
miR-34a and several cardiovascular disorders have been 
well established including: chronic heart disease [76], 
cardiac aging [77], left ventricular (LV) remodelling [78], 
LV dysfunction [79], heart failure [80], acute myocardial 
infarction [81] and arterial fibrillation [82].

Hsa‑mir‑122‑5p
miR-122-5p is highly expressed within the liver where it 
is involved in lipid metabolism and hepatocyte homeo-
stasis [131]. This may be a factor in the associations with 
lipid-related conditions such as coronary artery dis-
ease [83] and acute coronary syndrome [84]. Damage to 
hepatocytes was concluded to be the source of miR-122 
from hypoperfusion resulting in significant expression 
during cardiogenic shock [85, 86], ventricular fibrillation 
sudden cardiac arrest [87] and chronic systolic heart fail-
ure [88]. miR-122 has been implicated in aortic valve dys-
functions through its mediating of tissue fibrosis and the 

Fig. 3  Review of microRNAs associated with cardiotoxicity in breast cancer treatment
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extracellular matrix via the TGFβR1 gene [89, 90]. It has 
also been associated with arrythmogenic cardiomyopa-
thy [91], acute myocardial infarction [ [92]] and conges-
tive heart failure [93].

Hsa‑miR‑130a
miR-130a has been associated with apoptosis and angio-
genesis. It has been found to be significantly expressed in 
the conditions of acute coronary syndrome [59] by acting 
on TNF-α, Toll-like receptors (TLR) and transcription 
factor NF-κb. The downregulation of the ERBB4 Tyrosine 
kinase receptor by miR-130 leading to increased left ven-
tricle dilation and hypertrophy was found in the condi-
tion of peripartum cardiomyopathy [94]. It has also been 
linked to pulmonary hypertension [95], coronary heart 
disease [96] and aortic valve dysfunction [89].

Hsa‑mir‑199a
mir-199a is widely expressed in the myocardium and is 
highly sensitive to oxygen tension and hypoxia [132]. It 
has been linked to Sirtuin 1 (SIRT1) which is a cardiopro-
tective protein involved in the regulation of angiogenesis, 
endothelial function and vascular homeostasis. Down-
regulation of miR-199a has been noted in acute heart 
failure [97] and leads to an increase in SIRT1 expression 
in postoperative atrial fibrillation [98] and coronary heart 
disease [99–101]. Downregulated miR-199 also increased 
levels of atherosclerosis-related biomarkers (Angiogenin, 
Galactin-3 and Neuropilin-1) in heart failure patients 
with peripheral artery disease [102]. Increased miR-199 
has also been associated to atrial fibrillation in HFrEF 
patients [103] and acute myocardial infarction [104].

Hsa‑miR‑378a‑3p
miR-378a has varied functions in metabolism, muscle 
development, inflammation and angiogenesis [133]. It is 
highly expressed by cardiomyocytes but evidence for a 
specific role in response to cardiac damage is still unclear 
[133]. Significant down-regulation of miR-378 has been 
noted in both coronary heart disease [105] and coronary 
artery disease [106].

Hsa‑mir‑423
miR-423 has a functional role in cardiomyocyte apoptosis 
and has been linked to regulation of transcription factors 
of the OGT and PA2G4 genes in evidence from animal 
and in silico models [107]. It is correlated with levels of 
the cardiomyocyte-secreted hormone NT-proBNP which 
is used widely as a diagnostic of heart failure [108, 109]. 
Dysregulation of miR-423 has been found to be highly 
variable between cardiac disorders and potentially sub-
ject to rapid changes. Decreased levels have been linked 
to poor clinical outcomes in acute heart failure patients 

[58, 110] and lower risk in coronary artery disease [111]. 
Whereas, significantly increased miR-423 has been found 
in many cardiac disorders including acute myocardial 
infarction [38, 107, 112], cardiogenic shock [113], dilated 
cardiomyopathy [108], left ventricular remodelling [114, 
115], transposition of the great arteries [116] and heart 
failure [80, 109, 117].

Hsa‑mir‑499
miR-499 is highly expressed in heart muscle and is 
released directly from the heart myocardium follow-
ing tissue damage [40]. It has 70 primary mRNA targets 
involved in the developmental and metabolic pathways 
including SRY box  6 (Sox6), thyroid hormone receptor 
associated protein 1 (THRAP1), myocyte enhancer fac-
tor 2C (MEF2C), insulin-like growth factor-1 (IGF-1), 
pyruvate dehydrogenase subunit X (PDHX) and mediator 
complex subunit 13 (MED13) [134]. miR-499 also regu-
lates the kinase/phosphatase pathways, βMHC (myosin 
heavy chain) isoform switching, phosphorylation of the 
signalling proteins HSP90β and PP1α, mitogen-activated 
protein kinase (MAPK) cascades, mRNA transcription 
via Hipk1 and Hipk2 regulation, Ca2+ transport and cell 
survival [134]. Increased expression of miR-499 has been 
found in acute myocardial infarction [38, 41, 118, 119], 
stable coronary artery disease [120], acute coronary 
syndrome [40, 121], ST-segment-elevation myocardial 
infarction (STEMI) [115], non-ST elevation myocardial 
infarction (NSTEMI) [52], dilated cardiomyopathy [122], 
heart failure with preserved ejection fraction (HFpEF) 
[123], sudden cardiac death [42] and unstable coronary 
artery disease [83].

Hsa‑mir‑885‑5p
Recently identified as a regulator of cardiomyocyte apop-
tosis in human cardiomyocytes through inhibition of 
the genes PTEN, BCL2L11 and modulation of the AKT/
mTOR signalling pathway [135]. miR-885 is also impli-
cated in metastasis of certain cancers and as an indicator 
of toxic liver damage [136, 137] but no relevant clinical 
studies supporting the association of this microRNA with 
cardiovascular diseases were found.

Hsa‑miR‑1273 g‑3p
miR-1273 g has been linked to breast cancer [138, 139] 
and radiation treatments of cancer [140]. However, no 
clinical studies have reported a link with cardiovascular 
diseases and therefore, this microRNA is not currently 
considered informative for cardiotoxicity in breast cancer 
patients.
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Hsa‑miR‑4638‑3p
No relevant clinical studies were identified to confirm 
the association of this microRNA with cardiovascular 
diseases.

Discussion
Based on a systematic review of existing literature, 29 
miRNA markers were identified for the investigation of 
chemotherapy induced cardiotoxicity (CIC) in breast 
cancer patients [28–35] (Table 1). However, a lack of rep-
lication of results amongst miRNA studies is highlighted 
as a major limitation of identifying informative miRNA 
markers, with many studies producing conflicting 
results or not supporting previously observed significant 
changes in miRNA expression. Therefore, for this review 
a strategy of grouping miRNAs by evidence of the type 
of replication was adopted whereby miRNAs were con-
sidered informative if they showed significant changes in 
expression in one or more studies and if they had been 
independently replicated but found to be non-significant 
in another study (Table 1, Sections A & B). miRNAs that 
have been found to be non-significant in one or more 
independently replicated studies were rejected (Table  1, 
Section C), as were miRNAs which were found to have 
conflicting directions of expression change in indepen-
dently replicated studies (Table  1, Section D). The 14 
shortlisted miRNAs were further examined in the liter-
ature for clinical studies of patients with cardiovascular 
diseases (Table 3) to identify corresponding cardiac con-
ditions where these miRNAs have been found to have a 
significant change in expression. The direction of expres-
sion changes seen in these microRNAs were also repli-
cated in a number of other cardiovascular diseases which 
confirms their utility as biomarkers of cardiac damage 
similar to that expected from cardiotoxicity (cardiomyo-
cyte apoptosis, hypotrophy and fibrosis). However, three 
miRNAs were rejected for a lack of supporting evidence 
as no relevant publications in any cardiovascular condi-
tions have reported findings for these markers. There-
fore, the remaining 11 miRNAs (miR-1, 17, 19a, 29a, 34a, 
122, 130a, 199a, 378a, 423 and 499) were concluded to be 
most suitable for the detection of cardiac damage result-
ing from exposure to chemotherapy agents.

Many of the miRNAs reported in the reviewed cardio-
toxicity studies showed no significant changes between 
symptomatic and control groups which could indicate 
that either these markers were not activated within 
the pathway of cardiotoxic damage or that they may 
have been expressed at an earlier or later time point. 
The expression of miRNAs is known to change rapidly 
in some cardiomyopathies [74] and few of the studies 
included multiple sampling points. The majority of the 
clinical studies cited measured miRNAs immediately 

post-treatment or within 6 months of the end of treat-
ment and only two studies took samples during the 
chemotherapy treatment period [28, 31]. The tempo-
ral variation in circulating microRNA expression may 
not necessarily be related to cardiotoxicity but to other 
comorbidities, functional pathways or patient-related 
factors [141]. Expression changes of miRNAs related to 
skeletal muscle and the cardiovascular system have been 
noted to be influenced by exercise for up to 24 hrs [142]. 
Dietary factors such as alcohol [143] and saturated fatty 
acids [144] can also influence miRNAs, in addition to the 
potential for homologous xenomiRs of plant [145] and 
animal [146] origin that can persist through the human 
digestive system. miRNA data is inherently noisy due 
to these exogenous factors which when combined with 
variability and uncertainties introduced by the methods 
of sample processing and analysis [147], make the use of 
such data very difficult and open to errors.

A major limitation of the studies listed in Table 1 is the 
small number of patients in the groups showing cardio-
toxicity, between 7 and 20 subjects (Table 2), who were 
primarily classified by reduced LVEF (Left Ventricular 
Ejection Fraction) or elevated Troponin levels. This is 
reflected in the lack of repeatability between studies for 
the same microRNAs resulting in no significant changes 
in expression detected and a reduced statistical power for 
detecting dysregulation [148]. Small sample size reduces 
both the probability of detecting an effect and also that 
a statistically significant result reflects a true effect [149]. 
This is driven by the standard error of the measurements 
for miRNAs, the source of which may be interaction of a 
specific miRNA with different mRNA and gene pathways. 
Thus, it is essential to keep in mind that some miRNAs 
may suffer from a higher standard error, that cannot be 
adequately quantified or addressed with the small sample 
sizes found in most of the reviewed studies. Therefore, 
in addition to collating literature reporting statistically 
significant miRNA biomarkers associated to cancer 
treatment induced cardiotoxicity, we also looked at the 
change in level of expression of the reported miRNA in 
each group (cardiotoxic vs non-cardiotoxic). We expect 
true positive effects to replicate across independent stud-
ies, not just in terms of being statistically significant, 
but also in terms of the change of direction in the level 
of expression (increase versus decrease). Many of the 
attempted replications although reported as statistically 
significant in more than one scientific publication, in fact 
report opposite directionality in the level of expression in 
otherwise matching groups. This indicates that the quan-
tification of this miRNA has a higher standard error and, 
therefore, is more prone to wide variations in measure-
ments in groups of small sizes, resulting in false positive 
findings. An outcome of this manuscript is that there is 
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a clear need to assess the standard error of each miRNA 
in terms of the replicability of measurements within a 
homogeneous group of patients. This value, along with 
all other required parameters (expected effect sizes, ana-
lytical approach, etc) should then be used to calculate 
the minimum sample sizes required for any study that 
considers that specific miRNA as a potential biomarker. 
Large sample sizes can offset high standard error in 
miRNAs, although to determine exactly how large these 
sample sizes need to be requires some assumptions in 
terms of the expected effect sizes and standard error in 
miRNA quantification. To address such issues, the co-
authors of this manuscript are working through the Car-
dioCare project funded under Horizon2020 to establish 
a large patient cohort (750 breast cancer patients deter-
mined based on statistical power analyses), that explores 
miRNAs as well as other potential biomarkers of cancer 
treatment induced cardiotoxicity with results expected in 
2024 [150].

Interpretation of the expression of one specific 
miRNA is difficult due to the potential confound-
ing variables in patients with different characteristics, 
comorbidities and treatment regimes. Therefore, it is 
considered essential to apply a panel of several miR-
NAs linked to a condition of interest so that a profile 
of expression changes is generated, rather than relying 
on a single miRNA [151, 152]. Such panels have been 
developed previously for cardiovascular conditions 
such as myocardial infarction [153], dilated cardio-
myopathy [151] and have been applied for prognostic 
and diagnostic purposes in other conditions includ-
ing breast cancer [154], prostate cancer [155] and 

non-small cell lung cancer [156]. The nature of the 
chemotherapy agent appears to play a significant role 
in the expression of miRNAs as different agents elicited 
responses in different markers. The majority of studies 
have focused on anthracycline use and cardiotoxicity 
as this group of drugs are known to cause higher rates 
of cardiac damage than other chemotherapy agents [5]. 
Doxorubicin indicated significant changes in miRNA 
expression whereas, Epirubicin used as a single ther-
apy did not [32]. Epirubicin is commonly used in con-
junction with Cyclosphosphamide (alkylating agent) 
and Docetaxel or Paclitaxel (antimicrotubule agents) 
(termed EC-D or NAC regimes) and these treat-
ments did result in dysregulation of several miRNAs 
with some differences to Doxorubicin. Only one study 
reported a significantly differentially expressed miRNA 
in patients undergoing an EC-D plus Trastuzumab 
monoclonal antibody therapy [35]. From the results 
presented here a panel of informative miRNA markers 
specific to each chemotherapy approach is suggested 
as shown in Fig.  4. Three miRNA markers; miR-29a, 
miR-34a and miR-423, are considered as general cardi-
otoxicity indicators and these should be supplemented 
by miR-1, miR-499 and miR-122 for patients undergo-
ing a Doxorubicin treatment regime or miR-17, miR-
19a, miR-199 and miR-378, for patients undergoing a 
EC-D regime. Additionally, for patients undergoing a 
Trastuzumab regime, miR-130a can be utilised. Thus, 
three panels of seven to eight miRNAs are suggested as 
the most effective approach to identify chemotherapy 
induced cardiotoxicity in breast cancer patients. Fur-
ther research is required to investigate the prognostic 

Fig. 4  Panels of most-informative microRNA’s for chemotherapy-induced cardiotoxicity in breast cancer patients separated by treatment 
type. DOX = Doxorubicin, EC-D = Epirubicin + Cyclophosphamide & Docetaxel, NAC = Cyclophosphamide + Epirubicin & Paclitaxel, 
EC-D + T = Epirubicin + Cyclophosphamide & Docetaxel + Trastuzumab
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value of each panel and the precise miRNA responses 
to each specific chemotherapy regime and prove clini-
cal relevance of these panels.

miRNA modulation holds good promise as a thera-
peutic strategy to counteract cardiotoxicity induced 
by anticancer treatments. miRNAs are useful both as 
biomarkers of cardiotoxicity and for targeted therapy, 
since they may modulate entire signalling pathways. 
Unfortunately, many miRNAs modulated by anticancer 
treatments are also involved in cardiotoxicity. There-
fore, the comprehension of the mechanisms elicited 
by miRNAs and the amelioration of specific delivery in 
either cardiac or tumor regions, could help to reduce 
negative side effects.

Conclusion
The current body of evidence reveals that miRNAs 
can potentially offer clinically relevant information 
with regards to chemotherapy induced cardiotoxicity. 
However, many miRNAs reported as associated with 
these conditions may be the outcome of underpow-
ered studies due to small sample sizes. This has led to 
poor replication of results between studies and limits 
the evidence for the application of miRNAs as clinical 
biomarkers. Through this work, we present a systematic 
review of relevant miRNA studies and a list of the most 
informative miRNAs based on independent replication, 
direction of significant expression change and addi-
tional evidence from clinical studies of each miRNA 
within the wider field of cardiovascular disease. The list 
of potential miRNA biomarkers to assess cardiotoxic-
ity in cancer care are presented as a panel which can be 
modified to the therapeutic approach under considera-
tion. We recommend more studies with sufficient sta-
tistical power to accurately evaluate the potential use of 
miRNAs in clinical care. Statistical power needs to be 
assessed based on empirically quantified parameters for 
each miRNA considered.
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