
An et al. Cancer & Metabolism           (2022) 10:13  
https://doi.org/10.1186/s40170-022-00289-6

RESEARCH

Integrative analysis of plasma metabolomics 
and proteomics reveals the metabolic landscape 
of breast cancer
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Abstract 

Background:  Breast cancer (BC) is the most commonly diagnosed cancer. Currently, mammography and breast 
ultrasonography are the main clinical screening methods for BC. Our study aimed to reveal the specific metabolic 
profiles of BC patients and explore the specific metabolic signatures in human plasma for BC diagnosis.

Methods:  This study enrolled 216 participants, including BC patients, benign patients, and healthy controls (HC) and 
formed two cohorts, one training cohort and one testing cohort. Plasma samples were collected from each partici-
pant and subjected to perform nontargeted metabolomics and proteomics. The metabolic signatures for BC diagno-
sis were identified through machine learning.

Results:  Metabolomics analysis revealed that BC patients showed a significant change of metabolic profiles com-
pared to HC individuals. The alanine, aspartate and glutamate pathways, glutamine and glutamate metabolic path-
ways, and arginine biosynthesis pathways were the critical biological metabolic pathways in BC. Proteomics identified 
29 upregulated and 2 downregulated proteins in BC. Our integrative analysis found that aspartate aminotransferase 
(GOT1), l-lactate dehydrogenase B chain (LDHB), glutathione synthetase (GSS), and glutathione peroxidase 3 (GPX3) 
were closely involved in these metabolic pathways. Support vector machine (SVM) demonstrated a predictive model 
with 47 metabolites, and this model achieved a high accuracy in BC prediction (AUC = 1). Besides, this panel of 
metabolites also showed a fairly high predictive power in the testing cohort between BC vs HC (AUC = 0.794), and 
benign vs HC (AUC = 0.879).

Conclusions:  This study uncovered specific changes in the metabolic and proteomic profiling of breast cancer 
patients and identified a panel of 47 plasma metabolites, including sphingomyelins, glutamate, and cysteine could be 
potential diagnostic biomarkers for breast cancer.
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Background
Breast cancer (BC) is the first major malignancy seriously 
threatened the health of females worldwide. According 
to the latest statistics, female BC has already exceeded 
lung cancer to become the most commonly diagnosed 
cancer with an estimated 2.3 million (11.7%) new cases 
in 2020 [1]. In China, BC is also the most frequently 
occurring malignancy among females with approxi-
mately 304,000 (17.1%) new BC cases reported in 2015 
[2]. In recent years, along with societal development, a 
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20- to 40-year-old young BC patients have significantly 
increased, and BC onset shows a trend toward younger 
age. Among new diagnosed BC cases, approximately 3 to 
10% patients were accompanied with distant metastasis. 
Approximately 30% of early-stage patients can progress 
to advanced BC [3]. The prognosis of BC was found to be 
closely related to the developmental stage of the disease. 
Specifically, the overall 5-year survival rate of patients 
with BC is 89.9%, in which the 5-year survival rate is 
close to 100% for carcinoma in situ, and 85.5% for early-
stage invasive carcinoma, but only 25% for distant metas-
tasis [4]. Therefore, improving the early diagnosis rate of 
BC and giving timely and effective treatment is crucial to 
improve the survival rate of BC patients.

Many factors are closely related to the occurrence of 
BC, including aging, family history, reproductive fac-
tors, estrogen, and life styles. Additionally, mutations and 
abnormal amplifications of many genes, such as breast 
cancer associated genes 1 and 2 (BRCA1/2), human epi-
dermal growth factor receptor 2 (HER2), and epidermal 
growth factor receptor (EGFR) also play an important 
role in the occurrence and development of BC [5, 6]. At 
present, the pathogenesis of BC has not been fully dem-
onstrated. In addition to genetic factors, environmental 
factors are also involved in the occurrence and devel-
opment of the disease. Lécuyer et  al. found high levels 
of glucose, creatinine, glutamine, arginine, lysine, and 
valine to be closely associated with a higher risk of BC 
[7]. Another study reported that a higher level of glu-
tamine/isoglutamine, valine/norvaline, tryptophan, phe-
nylalanine, γ-glutamyl-threonine, 5-aminovaleric acid, or 
5-aminovaleric acid was related to an increased risk of BC 
[8]. These findings illustrated that metabolites may play 
an important role in the occurrence and development of 
BC. Currently, guidelines have recommended that imag-
ing be used to screen for BC, including mammography, 
breast ultrasonography, and breast MRI. However, the 
sensitivity of these methods is not high; therefore, addi-
tional scrutiny by breast tissue biopsy is typically needed 
to achieve a more accurate diagnosis [9, 10]. Serum 
tumor markers (TM) for clinical screening of BC, such as 
carcinoembryonic antigen (CEA) and carbohydrate anti-
gen 15-3 (CA15-3), have been widely used [11]. However, 
both the two TMs have poor sensitivity and specificity. 
Therefore, it is crucial to identify more sensitive biomark-
ers, along with understanding the mechanisms by which 
these biomarkers promote the onset and development of 
BC. One answer lies in the use of metabolomics technol-
ogy. Metabolomics performs a quantitative analysis of 
all metabolites in an organism and looks for the relative 
relationship between metabolites and physiopathologi-
cal changes [12]. Unlike genomics and proteomics, the 
focus of metabolomics is on the downstream products of 

genes and proteins, allowing more accurate identification 
of disease-associated changes that have occurred, rather 
than predictions [13].

At present, metabolomics technology has successfully 
been used to identify biomarkers in various tumors, such 
as lung cancer [14], pancreatic ductal adenocarcinoma 
[15], prostate cancer [16], bladder cancer [17], and breast 
cancer [18]. Many metabolomics studies have focused 
on BC. These studies have found specific biomarkers 
for diagnosis and therapeutic response prediction in BC 
according to the metabolomics analysis based on human 
serum, tissues, or urine [19–21]. However, some studies 
only reported on a small sample size, while the results 
of others were inconsistent. No studies, to the best of 
our knowledge, have systematically explored the pos-
sible mechanisms underlying key metabolic changes in 
BC. Therefore, we herein evaluated the plasma metabo-
lomics of BC patients and healthy individuals to identify 
cancer-associated changes in metabolites and metabolic 
pathways. And identified particular metabolite signatures 
through machine learning, which can used for BC early 
diagnosis.

Methods
Study design and participants enrollment
As shown in Supplementary Fig. S1, two cohorts of par-
ticipants were recruited from Sir Run Run Shaw Hospi-
tal, Zhejiang University School of Medicine, to perform 
the landscape of plasma metabolomics and proteomics in 
BC patients, including one training cohort and one test-
ing cohort. First, we measured metabolite profiles across 
the two cohorts. Second, 9 BC patients and 9 HC indi-
viduals were randomly selected from the training cohort 
to conduct the proteomics analysis. We then performed 
an integrative analysis of metabolomics and proteomics 
data. Finally, we used the differential metabolites in the 
training cohort to train a machine learning models and 
followed up by testing in the testing cohort.

The training cohort comprised 75 BC patients, 30 
benign patients, and 20 healthy controls (HC) enrolled 
from January 2018 to December 2018. The testing 
cohort comprised 32 BC patients, 30 benign patients, 
and 29 HC individuals recruited from October 2019 to 
June 2020. Demographic and clinical data of the partici-
pants, including age, sex, body mass index (BMI), men-
strual history, and family history were collected. For BC 
patients, special clinicopathologic features, including 
tumor type at the molecular level, tumor stage, CA15-
3, and CEA, were also collected. Then, in the training 
cohort, a TMT-labeled quantitative proteomics analysis 
was performed for 9 randomly selected BC patients and 
9 HC individuals. The study was carried out in accord-
ance with the Declaration of Helsinki. All participants 
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were properly familiarized with our study and pro-
vided a signed informed consent. The study protocol 
was approved by the Ethics Committee of Sir Run Run 
Shaw Hospital, Zhejiang University School of Medi-
cine (20180601-006). Inclusion criteria required that BC 
patients (1) be 18 to 79 years old and (2) be histopatho-
logically confirmed with BC with no other malignan-
cies. Further, (3) BC patients should not have undergone 
previous surgery, chemotherapy, or radiotherapy before 
enrollment. The inclusion criteria for HC participants 
required that they (1) be 18 to 79 years old and (2) have 
no history of tumor or other breast diseases. Other cri-
teria excluded any participant with (1) systemic chronic 
disease, such as cardiovascular diseases, hypertension, 
and diabetes; (2) metabolism-related disease, such as 
phenylketonuria and hepatic encephalopathy; (3) mental 
illness; and (4) females in menstruation, pregnancy, or 
lactation.

Plasma collection and preservation
Plasma samples for all participants were collected in the 
morning after overnight fasting (8–14h). Blood samples 
were collected using an EDTA anticoagulant tube and 
left at room temperature for 30 min. Then, the samples 
were centrifuged at 3000 rpm for 10 min. Supernatant 
(plasma) was collected in 1.5ml frozen tubes and stored 
at −80°C until further analyses.

Preparation of plasma samples for metabolomics
Samples were prepared using the automated MicroLab 
STAR® system from the Hamilton Company. Several 
recovery standards were added prior to the first step in 
the extraction process for quality control (QC) purposes. 
To remove protein, small molecules bound to protein, or 
trapped in the precipitated protein matrix, were dissoci-
ated, and chemically diverse metabolites were recovered. 
Proteins were precipitated with methanol under vigorous 
shaking for 2 min (Glen Mills GenoGrinder 2000, USA), 
followed by centrifugation. The samples were placed 
briefly on a TurboVap® (Zymark) to remove the organic 
solvent. The sample extracts were stored overnight under 
nitrogen before preparation for analysis. Small aliquots of 
each plasma sample were pooled to create QC samples, 
which were then injected periodically throughout the 
platform run.

Ultrahigh performance liquid chromatography‑tandem 
mass spectroscopy analysis (UPLC‑MS/MS analysis)
Metabolomics was performed by Metabolon Inc. (DIAN-
09-19VW) (Durham, NC, USA), using Waters ACQUITY 
ultra-performance liquid chromatography (UPLC) and a 
Thermo Scientific Q-Exactive high-resolution mass spec-
trometer which was interfaced with a heated electrospray 

ionization (HESI-II) source and Orbitrap mass analyzer. 
All samples in the discovery cohort were detected within 
the same batch, and all samples in the testing cohort were 
also detected within the same batch. Extracts were dried 
and reconstituted in solvent compatible with each of the 
methods. Hydrophilic compounds were analyzed using 
positively charged ions electrospray ionisation under 
acidic conditions. Specifically, the extracts underwent 
gradient elution from a C18 column (Waters UPLC BEH 
C18-2.1×100 mm, 1.7 μm), using water and methanol 
that consisted of 0.05% perfluoropentanoic acid (PFPeA) 
and 0.1% formic acid (FA). Hydrophobic compounds 
were also analyzed using positively charged ion electro-
spray ionization under acidic conditions with the same 
C18 column, as noted above, using methanol, acetoni-
trile, water, 0.05% PFPeA, and 0.01% FA, operated at an 
overall higher organic content. Basic extracts were ana-
lyzed using basic negative ion conditions, the extracts 
underwent gradient elution from a dedicated C18 col-
umn using methanol, water, and 6.5mM ammonium 
bicarbonate at pH 8. Then, a negative ionization, fol-
lowing the elution from a hydrophilic interaction liquid 
chromatography (HILIC) column (Waters UPLC BEH 
Amide 2.1×150 mm, 1.7 μm), was used for extract gradi-
ent-elution, using a gradient consisting of water and ace-
tonitrile with a 10-mM ammonium formate at pH 10.8. 
MS analysis alternated between MS and data-dependent 
MSn scans using dynamic exclusion. The scan range var-
ied slightly between methods, but covered 70–1000 m/z.

Metabolomics analysis
Raw data extraction, peak identification, and QC pro-
cessing were performed through Metabolon’s hardware 
and software. Compounds were identified by compari-
son with library entries of purified standards or recurrent 
unknown entities. The library contained retention time/
index (RI), mass to charge ratio (m/z), and chromato-
graphic data, including MS/MS spectral data, on all mol-
ecules present in the library. Biochemical identification 
was based on three other criteria, as follows: (1) retention 
index within a narrow RI window of the proposed identi-
fication, (2) accurate mass match to the library ± 10 ppm, 
and (3) MS/MS forward and reverse scores between the 
experimental data and authentic standards. A variety of 
curation procedures were carried out to ensure that a 
high-quality data set was made available for statistical 
analysis and data interpretation.

Peaks were quantified using the area under the curve, 
and the missing values were replaced by LoDs (1/5 of 
the minimum positive value of the variable). Then, nor-
malization and data scaling were completed by Meta-
boAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/), the 
parameter used for normalization was “Normalization 

https://www.metaboanalyst.ca/
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by sum,” and the parameter used for Data scaling was 
“auto scaling (mean-centered and divided by the stand-
ard deviation of each variable)”. In the univariate analy-
sis phase, fold change threshold (FC) of each metabolite 
was calculated, and Student’s t test or Mann–Whitney U 
test was applied to measure the differences in metabo-
lites between groups. In the multivariate analysis stage, 
orthogonal projections to latent structures discriminant 
analysis (OPLS-DA) was used to identify important 
metabolites selected according to variable importance in 
the projection (VIP > 1.0). Metabolites were considered 
significantly altered based on the following criteria: FC > 
1.2 or < 5/6, VIP >1, and P < 0.05. Metabolites meeting 
these criteria were subjected to KEGG pathway analysis 
to search for specific metabolic pathways closely associ-
ated with BC.

Preparation of plasma samples for proteomics
Before the proteomics experiment, plasma samples were 
centrifuged at 15,000g for 15 min. Then, the supernatant 
was filtered with a 0.22-μM filter. The top 14 high-abun-
dance proteins (albumin, IgG, antitrypsin, IgA, trans-
ferrin, haptoglobin, fibrinogen, alpha2-macroglobulin, 
alpha1-acid glycoprotein, IgM, apolipoprotein AI, apoli-
poprotein AII, complement C3, and transthyretin) were 
removed using immunoaffinity chromatography (IAC). 
Then, the low-abundance proteins underwent reduction, 
alkylation, and specific trypsin lysis. The digested pep-
tides were subjected to 10-plex TMT-labeling, followed 
by freeze-drying to a powdered form. The freeze-dried 
samples were reconstituted with 0.1% trifluoroacetic acid 
(TFA) and filtered using a 0.22-μM filter. The filtered 
samples were subjected to high-pH RP-HPLC separation, 
and the chromatographically separated components were 
collected. Mobile phase A was 5% NH3H2O+95% H2O, 
and mobile phase B was acetonitrile+5% NH3H2O+5% 
H2O. A total of 25 components were used to perform 
nano-LC-MS/MS analysis.

Nano‑LC‑MS/MS analysis
Twenty-five chromatographic components obtained from 
high-pH RP-HPLC were analyzed using a Q Exactive 
HF-X high-resolution mass spectrometer that was cou-
pled with an Easy nLC-1200 liquid chromatography sys-
tem. Mobile phase-A was 0.1% formic acid in water, and 
mobile phase-B was 0.1% formic acid in acetonitrile (80% 
acetonitrile and 20% water). The column consisted of an 
enrichment and analytical column and was equilibrated 
with 100% mobile phase-A. Samples were loaded onto an 
enrichment column (100μm_ID×4cmL, C18, 3μm, 100A) 
by an autosampler and separated using an analytical col-
umn (75 μm_ID×25cmL, C18, 3 μm, 100A). Then, mass 
spectrometry was performed with a Q Exactive HF-X 

mass spectrometer. The detection mode was positive 
ions and parent ion scan range of 350–1800 M/Z with a 
primary MS resolution of 120,000 at 200 m/Z, and AGC 
(automatic gain control) target was set to 3×106 ions, the 
maximum injection time to 50 ms and dynamic exclu-
sion time of 40s. The mass charge ratios of peptides and 
peptide fragments were collected according to the data-
dependent acquisition (DDA) method whereby 20 sec-
ondary profiles (MS/MS, MS2 scan) were acquired after 
each full scan (full scan, primary mass spectrometry).

Proteomics data analysis
Acquired spectra were searched against the complete 
proteome set of Homo sapiens from SwissProt (released 
version 2020_05). Database search parameters were set 
as follows: maximum of two missed cleavage sites per-
mitted for trypsin digestion, 10-ppm precursor mass 
tolerance, 0.02-Da fragment mass tolerance, cysteine 
carbamidomethylation (CAM) modification (+57.021 
Da) as a static modification, and oxidation modification 
for methionine (+15.995 Da) as a dynamic modification. 
LC-MS/MS data were processed and analyzed using Pro-
teome Discoverer, version 2.4 (ThermoFisher Scientific). 
All searches were filtered to a <1% false discovery rate 
(FDR).

The peak intensity of TMT-labeled peptide was nor-
malized, and the upregulated proteins (BC/HC > 1.25) 
and downregulated proteins (BC/HC < 0.80) were 
screened according to a fold change of 1.25. Proteins 
identified and quantified in the experiment were com-
pared with the whole set of proteins in the standard data-
base, followed by Gene Ontology (GO) analysis. Then, 
the direct and indirect relationships between the differ-
ential proteins using String (https://​string-​db.​org/), and 
Cytoscape, version: 3.2.1, was used to generate and ana-
lyze the interaction network.

Integration of metabolomics and proteomics
First, the correlation analysis between metabolomics and 
proteomics was performed using metabolites and pro-
teins that were significantly different between BC and HC 
groups. Then, the metabolites and proteins with signifi-
cant differences between groups were subjected to Joint 
Pathway Analysis using MetaboAnalyst 5.0 (https://​www.​
metab​oanal​yst.​ca/).

Machine learning for the prediction of breast cancer
For BC vs. non-BC (benign + HC), important metabo-
lites were first selected based on the following criteria: P 
< 0.05, VIP > 0.5, and AUC > 0.6. Then, we performed 
Lasso regression 10-fold cross validation and Random 
Forest by R packages “glmnet” and “Boruta” to select 
potential metabolites used to train a disease prediction 

https://string-db.org/
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model. Based on the above candidates, the support vec-
tor machine (SVM) and random forest (RF) models were 
applied using the R packages “e1071” and “randomFor-
est,” and the receiver operating characteristic (ROC) 
curves and area under the curve (AUC) were calculated 
by “pROC” from R package. Then, the SVM model was 
applied in the testing cohort, and the AUC was calculated 
to evaluate the diagnostic efficacy of the model.

Statistical analysis
All statistical analyses were performed by SPSS 26.0 (Sta-
tistical Product and Service Solutions, IBM, USA) and 
R, version 3.5.2 (R Foundation for Statistical Comput-
ing, Austria). Numerical variable data were expressed as 
mean ± standard deviation (mean ± SD). Comparisons 
between numerical variables were performed using Stu-
dent’s t test, Mann–Whitney U test, or one-way ANOVA 
analysis. Comparisons between categorical variables 
were performed by chi-square test. Correlation analysis 
between different variables was performed by Spearman’s 
rank correlation analysis. P < 0.05 was considered as sta-
tistical significance, and the original P values of multiple 
tests were adjusted by FDR (Benjamin–Hochberg).

Results
Demographic characteristics of the participants
Herein, metabolomics and proteomics analyses of 
plasma samples were performed to investigate the dif-
ferences in metabolites and proteins among BC, benign, 
and HC individuals and to identify diagnostic markers 
of BC patients. In the training cohort, a total of 75 BC 
patients (all female), 30 benign patients (all female), and 
20 HC (all female) were assessed for metabolomic analy-
sis. BC patients were older than benign patients and HC 
individuals (52.03 ± 10.62 vs. 43.60 ± 11.93 vs. 44.68 ± 
13.20, respectively, P = 0.001). There was no significant 
difference in the population of post-menopausal woman 
among BC, benign, and HC groups (40%, 26.7%, 35%, 
respectively, P > 0.05). Then, 9 BC patients and 9 HC 
individuals were randomly selected from the training 
cohort to conduct the proteomics analysis. In the testing 
cohort, 32 BC patients (all females), 30 benign patients 
(all females), and 29 HC individuals (all females) were 
analyzed. In this cohort, BC patients were also older than 
participants in the other two groups (53.81 ± 11.15 vs. 
39.60 ± 11.67 vs. 37.97 ± 8.60, respectively, P < 0.001) 
and also had a higher proportion of post-menopausal 
women compared to the benign group (37.5 vs. 10%, 
respectively, P < 0.001). The tumor markers CEA and 
CA15-3 for BC, CEA > 5ng/ml and CA15-3 > 25 U/ml, 
were each considered as BC-positive, respectively. And 
the BC group had a higher BC-positive rate compared 
to benign and HC groups according to CA15-3 and CEA 

(18.8% and 6.3%, respectively). No significant difference 
in BMI was observed among the three groups both in 
training and testing cohorts. The detailed demographic 
and clinical characteristics of the training and test-
ing cohorts were shown in Table  1 and Supplementary 
Table 1.

Plasma metabolic profiles
To assess the specific metabolic profiles of BC, we per-
formed an untargeted metabolomics analysis of paired 
plasma samples based on UPLC-MS/MS in the training 
cohort, finally identifying and quantifying 917 metabo-
lites in the three groups (Fig.  1A). After removing the 
metabolites with more than 20% missing values, 750 
metabolites were further analyzed. Then, after normal-
izing the raw data and assigning missing values with 
LoDs, we firstly calculated the FC and P values of each 
metabolite in each pairwise comparisons (BC vs. HC, 
benign vs. HC, and BC vs. benign). Next, we applied 
the volcano plots of pairwise comparisons within BC, 
benign, and HC to show the expression of metabolites. 
For BC vs. HC (Fig. 1B), the most abundant metabolites 
in BC mainly included the primary bile acid metabolism 
compounds (taurocholate, taurochenodeoxycholate, gly-
cocholate, allantoin); secondary bile acid metabolism 
compounds (taurodeoxycholate, glycodeoxycholate, 
ursodeoxycholate); fructose, mannose, and galactose 
metabolism compounds (mannose and fructose); tyros-
ine metabolism compounds (tyramine O-sulfate, N-for-
mylphenylalanine, dopamine 4-sulfate); and glycerolipid 
metabolism compounds (glycerol and glycerol 3-phos-
phate). The HC group had a higher level of fatty acid 
metabolism (acyl carnitine) compounds (oleoylcarnitine 
(C18:1) and docosapentaenoylcarnitine (C22:5n3)); glu-
tathione metabolism compounds (cysteinylglycine, cys-
gly, oxidized, cysteine-glutathione disulfide); glycolysis, 
gluconeogenesis, and pyruvate metabolism compounds 
(pyruvate and lactate); and citrate cycle (TCA cycle) 
pathway metabolism compounds (fumarate, malate, suc-
cinate), as well as urea cycle, arginine, and proline metab-
olism compounds (N-methylproline and ornithine). For 
benign vs. HC (Fig. 1C), the most abundant metabolites 
in benign patients included fatty acid, amide metabolism 
compounds (oleamide, palitamide (16:0), linoleamide 
(18:2n6), and palmitoleamide (16:1)); primary bile acid 
metabolism compounds (glycocholate, glycochenode-
oxycholate); secondary bile acid metabolism compounds 
(taurodeoxycholate, glycodeoxycholate); and fatty acid, 
dicarboxylate metabolism compounds (2-hydroxyseba-
cate, octadecadienedioate (C18:2-DC)). Metabolites with 
higher level in HC were similar to the above. However, 
no obvious difference between BC and benign was noted 
(Supplementary Fig. S2A).
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Then, OPLS-DA was performed to evaluate the separa-
tion between groups and meanwhile identify the metab-
olites important for classification and discrimination 
between pairwise comparisons, and 100 permutation 
tests were conducted to validate the model. The results 
indicated an obvious separation between BC and HC 
groups (PC1 = 9.1%, PC2 = 13.8%) (Fig. 1D), similar to 
the benign and HC groups (PC1 = 14.1%, PC2 = 12%) 
(Fig.  1E). Both the two models obtained good values of 
explained ability (R2) and predictive ability (Q2) (R2Y = 
0.960, P < 0.01 and Q2 = 0.892, P < 0.01; R2Y = 0.966, P < 
0.01 and Q2 = 0.93, P < 0.01, respectively). However, the 
BC and benign groups were not completely separated, 
and the Q2 and R2 results were also bad (R2Y = 0.537, P 
= 0.83 and Q2 = 0.0344, P < 0.01) (Supplementary Fig. 
S2B). The above results indicated differences in the met-
abolic profiles between BC and HC, as well as between 
benign and HC. The results also showed that both BC 
and benign could be distinguished from HC by specific 
metabolite signatures. However, the current findings did 
not prove that metabolites could differentiate BC from 
benign. Therefore, we further analyzed the metabolic 
profiles between BC and HC. According to the OPLS-
DA model, we identified 194 important metabolites (VIP 
> 1). Among the top 25 metabolites, the levels of pyru-
vate, cysteinylglycine, 5-oxoproline, uracil, N-carbamo-
ylaspartate, AMP, aspartate, phosphate, and others were 
increased in HC. While the levels of 5-methylthioad-
enosine (MTA) and 2’-O-methylcytidine were increased 

in BC participants (Fig.  2A). The FC, VIP, and P values 
of each metabolite in the BC vs. HC comparison were 
shown in Supplementary Table 2.

Differential metabolites and pathways between BC and HC 
groups
A total of 187 significant metabolites were identified 
based on VIP > 1, FC >1.2 or <5/6, and P < 0.05. Among 
these metabolites, 17 metabolites were xenobiotics and 
2 metabolites belonged to partially characterized mol-
ecules. The remaining 168 metabolites were further 
analyzed (Supplementary Table  3). Then, we performed 
pathway and enrichment analyses based on the 168 
metabolites. According to the results of enrichment anal-
ysis (Fig.  2B), these significant metabolites were mainly 
concentrated in 46 metabolic pathways, including the 
glutamine and glutamate metabolic pathways (5 hits); 
arginine biosynthesis pathway (7 hits); alanine, aspartate, 
and glutamate metabolic pathways (9 hits); pantothen-
ate and CoA biosynthesis pathway (4 hits); citrate cycle 
(TCA cycle) pathway (4 hits); and pyrimidine metabo-
lism pathway (6 hits). In pathway analysis, we generated 
bubble plots to identify the specific metabolic pathways 
closely associated with BC. According to the -log10(P) 
value and pathway impact score two indicators, alanine, 
aspartate, and glutamate metabolism; glutamine and glu-
tamate metabolism; arginine biosynthesis; citrate cycle 
(TCA cycle); and pyrimidine metabolism were the most 
important metabolic pathways (Fig.  2C). Hierarchical 

Table 1  Demographic characteristics of training cohort participants

Continuous variables (age and BMI) were tested with one-way ANOVA analysis. Dichotomous data (menopause) was tested with chi-square test, assigned “post-
menopausal women” = 1 and “pre-menopausal women” = 2. “P < 0.05” was considered as a statistical significance

Abbreviations: BC breast cancer, BMI body mass index, NA not applicable

Parameters Healthy controls Benign patients BC patients P value

Number of samples 20 30 75

Age (years, mean ± SD) 44.68 ± 13.20 43.60 ± 11.93 52.03 ± 10.62 0.001

Gender (female) 20 30 75 -

BMI (mean±SD, kg/m2) 22.47 ± 2.81 22.49 ± 2.29 23.02 ± 3.28 0.634

Tumor molecular type NA NA -

  Luminal A 19 (25.3%)

  Luminal B 34 (45.3%)

  HER-2+ 14 (18.7%)

  Basal-like 8 (10.7%)

Menopause 0.435

  Post-menopausal women 7 (35%) 8 (26.7%) 30 (40%)

  Pre-menopausal women 13 (65%) 22 (73.3%) 45 (60%)

Tumor stage NA NA -

  I 31 (41.33%)

  II 33 (44%)

  III 11 (14.67%)
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Fig. 1  Metabolomics showed differences among groups of BC, benign, and HC. A Working pipeline for metabolomic analysis. B, C Volcano 
plot showing the metabolites that were significantly different between BC and HC groups and benign and HC groups, respectively. Each point 
represents a metabolite, red: upregulated metabolites, blue: downregulated metabolites. D, E Score plots of OPLS-DA models showing the 
separation between BC and HC groups and benign and HC groups, respectively. Each point represents a sample, red: BC patients, green: benign 
patients, blue: HC controls
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Fig. 2  Differential metabolites and pathways between BC and HC groups. A Important metabolites identified by variable importance in projection 
(VIP) score obtained from OPLS-DA model. B Enrichment analysis results of the differential metabolites. Each column represents a metabolic 
pathway, the length of the column indicates the enrichment ratio. C Top significant functional pathways involved according to the deferentially 
expressed metabolites. Each circle represents a metabolic pathway, the larger the circle, the greater the pathway impact
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clustering (HCA) analysis demonstrated that the 168 dif-
ferentially expressed metabolites could obviously sepa-
rate BC from HC. Among them, 71 metabolites were 
higher in BC patients, while the remaining 97 metabo-
lites showed an opposite pattern with a higher level in 
HC (Fig. 3).

Proteomic profiles and integrative analysis 
with metabolomics
To understand the specific proteomic changes associ-
ated with the onset and progression of BC, we performed 
a global-scale plasma proteomics analysis. For the BC 
and HC groups, 9 plasma samples each were randomly 
selected form the training cohort. Then, 9 HC plasma 
samples were mixed into one loading sample. A total of 
2103 proteins encoded by 1538 genes were identified, of 
which 1934 proteins encoded by 1407 genes were quanti-
fied. According to the criteria of 1.25-fold (FC > 1.25 or < 
0.8), unique peptides ≥ 2, and peptide spectrum matches 
≥ 5, 29 upregulated proteins and 2 downregulated pro-
teins were observed in the BC group, which could be 
used as potential biomarkers for further evaluation and 
validation experiments (Supplementary Table  4). Gene 
Ontology (GO) analysis showed that these differen-
tial proteins had many important biological functions, 
including platelet degranulation, muscle filament sliding, 
and actin-myosin filament sliding. Protein–protein inter-
action network (PPI) analysis revealed that these proteins 
were closely related, the most closely related being tran-
sthyretin (TTR), carboxypeptidase B2 (CBP2), and vita-
min D-binding protein (GC) (Supplementary Fig. S3A).

We next carried out an integrative analysis to assess 
the connection between metabolites and proteins in BC 
patients. We first analyzed the correlation between the 
expression of differential metabolites and proteins. Dif-
ferential metabolites were grouped into four clusters 
based on correlation values with proteins. The upper 2 
clusters of metabolites were negatively correlated with 
these proteins, while the bottom 2 clusters of metabolites 
were positively correlated (Supplementary Fig. S3B). Spe-
cifically, the levels of fructose, mannose, and galactose 
metabolic pathway compounds (fructose and mannose); 
hemoglobin and porphyrin metabolic pathway com-
pounds (bilirubin and biliverdin); and leucine, isoleucine, 
and valine metabolic pathway compounds (isobutyrylg-
lycine) were negatively associated with these differential 
proteins. While levels of glutamate metabolic pathway 
compounds (glutamate and pyroglutamine); glutathione 
metabolic pathway compounds (5−oxoproline and 
cysteinylglycine); glycolysis, gluconeogenesis, and pyru-
vate metabolic pathway compounds (lactate and pyru-
vate); as well as methionine, cysteine, SAM, and taurine 
metabolic pathway compounds (taurine and cysteine) 

were positively associated with these proteins (Fig.  4). 
Then, we integrated the top biomarkers from metabo-
lomics and proteomics data in a joint pathway analysis 
(Fig. 5A). This led to the identification of several impor-
tant pathways which closely participated in the patho-
physiologic processes of BC, including alanine, aspartate, 
and glutamate metabolism; arginine biosynthesis; argi-
nine and proline metabolism; glycolysis or gluconeogene-
sis; cysteine and methionine metabolism; and glutathione 
metabolism. These metabolic pathways contained 13 key 
metabolites (5-methylthioadenosine (MTA), glutamine, 
glucose, arginine, aspartate, cysteinylglycine, succinate, 
glutamate, alpha-ketoglutarate, pyruvate, lactate, N-acet-
ylaspartate (NAA), cysteine) and 4 important proteins 
(aspartate aminotransferase (GOT1), l-lactate dehydro-
genase B chain (LDHB), glutathione synthetase (GSS), 
and glutathione peroxidase 3 (GPX3)) (Fig. 5B).

Identification of plasma metabolic signatures for breast 
cancer diagnosis
In order to identify metabolites that could be used for 
early diagnosis of BC, machine learning algorithms, 
namely the random forest (RF) and support vector 
machine (SVM) models, were employed. For clinical use, 
the primary goal of breast cancer screening was to iden-
tify patients with breast cancer from populations. To do 
this, we first selected important metabolites between the 
BC and non-BC (benign + HC) groups based on the fol-
lowing criteria: P < 0.05, VIP > 0.5, and AUC > 0.6. This 
resulted in the identification of 428 metabolites. Then, 
we performed Lasso regression 10-fold cross-validation 
and random forest to further screen the metabolite bio-
markers. Lasso regression identified 13 metabolites (Sup-
plementary Fig. S4), and Random Forest identified 46 
metabolites. 47 metabolites were finally selected after 
combing the 13 metabolites and 46 metabolites (Supple-
mentary Table 5). The pathway analyses based on the 47 
selected metabolites demonstrated the most important 
metabolic pathways were the glutamine and glutamate 
metabolism, alanine, aspartate and glutamate metabo-
lism, arginine biosynthesis, and citrate cycle (TCA cycle) 
(Supplementary Fig. S5), which were consistent with the 
above differential metabolites participated pathways. 
And this emphasized that these metabolic pathways may 
play a critical role in the pathogennesis of breast cancer. 
To verify the values of the 47 identified metabolites in 
predicting BC, we used these 47 metabolites to train RF 
and SVM models.

Both RF (Supplementary Fig. S6A) and SVM (Fig. 6A) 
models were highly accurate in their prediction of BC in 
the training cohort (AUC = 0.998 and 1, respectively). 
Besides the training cohort, we measured the expression 
of metabolites in the internal testing cohort. The SVM 
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Fig. 3  Hierarchical clustering analysis (HCA) of the differential metabolites between BC and HC groups. The colors from red to blue represent the 
relative levels of the metabolites between the two groups
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model trained from the training cohort was applied to 
the testing cohort to further evaluate the model’s perfor-
mance, and we found a good predictive power between 
BC and non-BC (AUC = 0.610) (Supplementary Fig. 
S6B). Besides the good performance of the model in dis-
tinguishing BC from non-BC, we further evaluated the 

performance in different subgroups of the testing cohort. 
For BC vs. HC, the AUC was 0.794 (Fig.  6B), and for 
benign vs. HC, the AUC was 0.879 (Fig. 6C). Both were 
higher than the two commonly used tumor markers for 
BC, CA15-3, and CEA (AUC = 0.722 and 0.757, respec-
tively) (Fig. 6D). But the AUC was low for BC vs. benign 

Fig. 4  Heatmap of Spearman’s rank correlation analysis between differential metabolites and proteins. Blue: negative correlation; Red: positive 
correlation. Significant correlations regions were marked by stars (*P < 0.05, **P < 0.01)

Fig. 5  Integrated analysis of metabolomics and proteomics. A Joint pathway analysis of differential metabolites and proteins. Metabolites and 
proteins were presented in circles and squares; proteins and metabolites enriched in BC patients and those with HC individuals were indicated by 
solid lines and dashed lines, respectively. Metabolites and proteins involved in the same metabolic pathways were connected by lines, and each 
pathway had a corresponding color. B Differential expression of those metabolites and proteins involved in these metabolic pathways between BC 
and HC groups. **P < 0.01

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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(Supplementary Fig. S6C). These results indicated that 
the SVM model trained by 47 metabolites could effec-
tively distinguish BC from HC individuals.

Discussion
Early detection, diagnosis, and intervention of BC are 
challenging but crucial [22]. At present, the most com-
monly used BC screening methods include mammogra-
phy and breast ultrasonography [9]. However, almost all 
breast nodules found in the above examinations usually 
need further scrutiny with breast biopsy to determine the 
nature of the nodules. This calls for the development of 
non-invasive and reliable plasma biomarkers which could 
be used to build cost-effective assays for routine clinical 
screening and thus substantially improve the manage-
ment of BC.

BC is highly heterogeneous, and this heterogeneity 
is difficult to show by routine histopathological exami-
nation [23]. Cancer cells, however, often show obvi-
ous changes in cell metabolism, and such changes have 
shown a biochemical basis for tumorigenicity and 

malignancy [24]. Facilitated by the progress in techno-
logical and societal development, metabolomics has 
already been widely used in the clinic to help in the diag-
nosis of diseases [25]. Metabolomics is a new discipline 
involving the simultaneous qualitative and quantitative 
analysis of all metabolites in a given organism or cell 
during a given physiological period [26]. Unlike genom-
ics and proteomics, metabolomics mainly reflects the 
end products of the cellular metabolic process, which, 
beyond the genome and proteome, represent the most 
downstream stage of vital movement [13]. The levels of 
these metabolites can be considered the final response of 
an organism to genetic or environmental changes, thus 
becoming an accurate reflection of disease phenotype 
[12]. Accordingly, metabolomics has been a pivotal tool 
for disease-biomarker identification and also a technique 
for discovering drivers of biological processes. Herein, we 
applied this approach to explore the specific metabolic 
signatures for specific use in BC diagnosis.

In this study, we performed metabolomics on plasma 
from 216 HC, benign, and BC subjects from two cohorts. 

Fig. 6  Specific metabolic signature-based diagnostic biomarkers for BC. A ROC curves of the prediction efficacy for the metabolites-based 
predictors in training cohort using SVM (AUC = 1). B, C The validation for the performance of the prediction model in testing cohort using SVM, BC 
vs. HC (AUC = 0.794) (B), benign vs. HC (AUC = 0.879) (C). D ROC curves of the prediction efficacy of the CA15-3 (AUC = 0.722) and CEA (AUC = 
0.757)
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In the training cohort, metabolomics analysis identi-
fied and quantified 917 metabolites. Obvious separa-
tion could be observed between BC and HC, as well as 
between benign and HC, indicating the existence of a 
specific metabolic profile for each condition. However, 
the separation between BC and benign was narrower. 
Similar group separation has been previously reported 
[27]. For BC vs. HC, our metabolomics results identi-
fied glutamate and glutamine metabolism, as well as 
alanine, aspartate, and glutamate and arginine biosyn-
thesis metabolism were the most important pathways in 
BC, suggesting extensive metabolic disorders during BC 
progression. Previous study has demonstrated that the 
alanine, aspartate, and glutamate pathway was a critical 
biological pathway for early diagnosis of BC [28]. Argi-
nine metabolic pathway has been identified as potential 
therapeutic targets and diagnostic biomarkers for gastric 
cancer [29]. Most metabolites in these three metabolic 
pathways were downregulated in BC patients compared 
to HC, suggesting that these three metabolic pathways 
and metabolites in these metabolic pathways may play 
an important role in the pathophysiological processes 
of BC. However, a defining link between these meta-
bolic pathways and BC development still needs further 
clarification.

In fact, proteins and metabolites interact. On the one 
hand, proteins can affect metabolite signatures, whereas, 
conversely, metabolites can affect the level of proteins 
through enzymatic reaction [30, 31]. Thus, the combined 
analysis of proteomics and metabolomics can provide us 
with a more comprehensive understanding of BC. The 
proteomics data specifically identified 29 upregulated 
proteins, such as GOT1, LDHB, GPX3, and GSS, and 2 
downregulated proteins, including dipeptidyl peptidase 4 
(DPP4) and GC) in BC. Among the 31 differential pro-
teins, GOT1, LDHB, GPX3, and GSS were closely con-
nected with metabolites and collectively participated in 
several important metabolic pathways, including alanine, 
aspartate and glutamate pathway, arginine biosynthesis 
pathway, arginine and proline metabolism, glycolysis or 
gluconeogenesis, cysteine and methionine metabolism, 
and glutathione metabolism.

What are the mechanisms and functions of these four 
proteins in BC patients? GOT1 is a transaminase mainly 
existed in cardiomyocytes and the mitochondria of 
hepatocytes. It is well known that GOT1 levels increase is 
usually a response to injury in hepatocytes and cardiomy-
ocytes. GOT1 catalyzes the production of pyruvate and 
glutamate from alanine and ketoglutarate and is therefore 
closely related to the citrate cycle and the metabolic path-
ways involved in glutamate. In recent years, the GOT1 
metabolic pathway has been found to play an important 
role in many cancers, such as glioblastoma multiforme, 

small cell lung cancer, pancreatic ductal adenocarcinoma 
(PDCA), and BC [32–34]. The effects of GOT1 on can-
cer cells have been fully demonstrated in PDAC. Specifi-
cally, the inhibition of GOT1 activity could suppress the 
growth of PDAC cells. Meanwhile, GOT1 could regulate 
the balance between energy metabolism and reactive 
oxygen species (ROS) in acidosis [35]. Therefore, GOT1 
knockdown could disrupt nucleotide metabolism, glyco-
lysis, and redox homeostasis in PDAC cells [36]. Besides, 
GOT1 knockdown also could accelerate pancreatic can-
cer cell death by regulating iron metabolism and fer-
roptosis [37]. LDHB is one of the important enzymes of 
glycolysis and gluconeogenesis, typically used to monitor 
myocardial infarction. LDHB plays an important role in 
the reciprocal transformation of pyruvate and lactic acid, 
so it is crucial to the cancer-specific Warburg effect, and 
thus, it may be an important cancer-related target. Stud-
ies found that LDHB could be regulated by the kruppel-
like factor 14 (KLF14) transcription factor to regulate 
glycolysis [38] and be regulated by the fibroblast growth 
factor receptor 1 (FGFR1) to regulate Warburg effect 
[39]. The increased LDHB promoted more pyruvate com-
fort to lactic acid, and the increased lactate levels in the 
tumor microenvironment could promote tumor invasion 
and metastasis through the activation of vascular growth 
factor, and promotion the expression activity of hyalu-
ronan with its receptor CD44 [40]. In addition, LDHB 
expression had different effects on different tumors, pro-
moting or inhibiting tumor growth. Many studies have 
found that LDHB could promote the proliferation, migra-
tion, and invasion of cancer cells by regulating apoptosis 
and autophagy [41–43]. GPX3, a selenoprotein, can cata-
lyze the reduction of hydrogen peroxide and other hyper-
oxides by reduced glutathione (GSH), so as to remove 
reactive oxygen species and reduce DNA damage. Stud-
ies have founded that GPX3 played a dual role in tumor 
development. On the one hand, it can act as a tumor sup-
pressor protein, while on the other hand, it can also act 
as a pro-survival protein during the progression of tumor 
[44]. Specifically, the over-expression of GPX3 could 
decrease the clonogenic growth, xenograft tumor size, 
and migration and invasion of prostate cancer cells [45]. 
Additionally, GPX3 over-expression similarly suppressed 
the proliferation and metastasis of cancer cells [46]. The 
anti-tumor activity of GPX3 depends on its downregu-
lation of the oxidant-regulated tumor-promoting sign-
aling pathway. However, other studies found that GPX3 
over-expression can promote tumor progression [47, 48]. 
Based on these findings, we speculate that GOT1, LDHB, 
and GPX3 may affect BC through the same mechanisms 
as those mentioned above, such as disrupting glycolysis 
and nucleotide metabolism, promoting ferroptosis, or 
downregulating the oxidant-regulated tumor-promoting 
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signaling pathway. However, these hypotheses also need 
further research to verify.

To further identify the specific metabolic signatures for 
BC diagnosis, a SVM model was employed, and it defined 
a predictive model with 47 metabolites. Among these 47 
metabolites, several metabolites were shown to be closely 
associated with cancer. Sphingomyelins (SM), most of 
which were upregulated in BC, are a main class of sphin-
golipids. SMs are the basic elements of the cell membrane 
and play a critical role in cellular function. The prolifera-
tive effects of SMs can be explained by several possible 
mechanisms. The metabolites of SMs, including cera-
mide (CER), sphingosine (SPH), and sphingosine-1-phos-
phate (S1P), as important signaling molecules, regulated 
many cellular life activities, including cellular prolifera-
tion, growth, apoptosis, and autophagy [49, 50]. Many 
studies have found the increased SMs were closely asso-
ciated with a worse prognosis in ovarian, breast, prostate, 
and colorectal cancer [51, 52]. Additionally, SMs have 
been identified as diagnostic and prognostic biomarkers 
of several kinds of cancer, such as endometrial cancer 
and epithelial ovarian cancer [53, 54]. Glutamate, down-
regulated in BC, is a key excitatory neurotransmitters 
that participates in biosynthesis, metabolic, and carcino-
genic signaling pathways [55]. Glutamate can combine 
with ammonia to form glutamine, then dissociated after 
being transported to the liver and kidney, which is an 
important way to protect against ammonia poisoning. In 
addition, glutamate is participated in the urea synthesis 
and nucleotide metabolism. Interestingly, the decreased 
glutamate in the plasma was conversely related to the 
increased glutamate in BC tissues [56], suggesting that 
BC cells absorbed large amounts of glutamate from blood 
circulation to maintain the life activities of tumor cells. 
The upregulation of glutamate has also been observed in 
other types of cancer, such as serous ovarian cancer and 
lung adenocarcinoma [57, 58]. Studies found that gluta-
mate could accelerate tumorigenesis by activating the 
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors (AMPAR), as well as promoted the inva-
sion and migration of pancreatic cancer cells through 
activation of the MAPK pathway [59]. In BC, glutamate 
was also found to be important in the induction of HIF1α 
under normoxic conditions [60]. Cysteine, downregu-
lated in BC, is a common amino acid in organisms. Simi-
larly, the decreased cysteine in the plasma is conversely 
related to the increased cysteine in BC tissues [56], sug-
gesting BC cells utilized more cysteine. Cysteine actively 
participates in cancer metabolic reconstruction in dif-
ferent ways. For instance, it can act as an ingredient in 
glutathione redox reaction. It is also a substrate for pro-
ducing hydrogen sulphide (H2S) that stimulates cel-
lular bioenergetics. Finally, it provides a carbon source 

for energy production and biomass production [61]. A 
cysteine-related metabolic pathway, cysteinyl leukot-
riene pathway (CysLT), is closely associated with cancer 
[62]. CysLT can promote the survival and proliferation 
of many cancer cells. However, its disruption reduced 
cell viability and led to cell death in many types of can-
cer cells, including breast cancer, lung cancer, and neu-
rological malignancies. Moreover, CysLT was also related 
to chemoresistance of cancer, and its disruption could 
reverse chemoresistance. Based on the above findings, 
we believe that the panel of 47 metabolites, including SM, 
glutamate, and cysteine, closely participates in the patho-
physiology of BC and that it can achieve high efficacy 
in the diagnosis of breast cancer. Of course, the specific 
mechanisms need further study.

Our study also has several limitations. First, the sam-
ple size was relatively small. All participants enrolled 
from one single center, and no external testing cohort 
was established. Second, the samples used for proteomics 
analysis were too small, and the results were not verified. 
Third, the exact mechanism underlying the involvement 
of these identified metabolites in BC is still not clear. 
Thus, further proteomics and metabolomics analysis 
with larger sample size from multiple centers is required 
to validate our results. A mechanistic study of several 
metabolites and proteins in the pathophysiology of breast 
cancer is the focus of our next study.

Conclusions
In conclusion, we have characterized the systematic 
changes of plasma metabolome and proteinogram in BC 
patients. The alanine, aspartate and glutamate pathway, 
glutamine and glutamate metabolic pathway, and argi-
nine biosynthesis pathway were the crucial metabolic 
pathways in the pathogenesis of breast cancer. We also 
identified a panel of 47 metabolites, including sphingo-
myelins, glutamate, and cysteine, which could be effec-
tively used for BC diagnosis. Although it is too early to 
infer that these biomarkers will replace the current BC 
screening used in the clinic, our study did succeed in 
demonstrating that the analysis of plasma metabolomics 
provides a high confidence interval for exploring diag-
nostic biomarkers for BC. We believe that our findings 
can contribute to the development of effective diagnostic 
tools with extensive applications in the clinical screening 
of breast cancer after further experimental confirmation.
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