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Abstract 

Several studies on long-term air pollution exposure and sleep have reported inconsistent results. Large-scale stud-
ies on short-term air pollution exposures and sleep have not been conducted. We investigated the associations of 
long- and short-term exposure to ambient air pollutants with sleep in a Chinese population based on over 1 million 
nights of sleep data from consumer wearable devices. Air pollution data including particulate matter (PM2.5, PM10), 
nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) were collected from the Ministry 
of Ecology and Environment. Short-term exposure was defined as a moving average of the exposure level for different 
lag days from Lag0 to Lag0-6. A 365-day moving average of air pollution was regarded as long-term exposure. Sleep 
data were recorded using wearable devices from 2017 to 2019. The mixed-effects model was used to evaluate the 
associations. We observed that sleep parameters were associated with long-term exposure to all air pollutants. Higher 
levels of air pollutant concentrations were associated with longer total sleep and light sleep duration, shorter deep 
sleep duration, and decreases in wake after sleep onset (WASO), with stronger associations of exposures to NO2 and 
CO [a 1-interquartile range (IQR) increased NO2 (10.3 μg/m3) was associated with 8.7 min (95% CI: 8.08 to 9.32) longer 
sleep duration, a 1-IQR increased CO (0.3 mg/m3) was associated with 5.0 min (95% CI: − 5.13 to − 4.89) shorter deep 
sleep duration, 7.7 min (95% CI: 7.46 to 7.85) longer light sleep duration, and 0.5% (95% CI: − 0.5 to − 0.4%) lower 
proportion of WASO duration to total sleep]. The cumulative effect of short-term exposure on Lag0-6 is similar to 
long-term exposure but relatively less. Subgroup analyses indicated generally greater effects on individuals who were 
female, younger (< 45 years), slept longer (≥ 7 h), and during cold seasons, but the pattern of effects was mixed. We 
supplemented two additional types of stratified analyses to reduce repeated measures of outcomes and exposures 
while accounting for individual variation. The results were consistent with the overall results, proving the robustness 
of the overall results. In summary, both short- and long-term exposure to air pollution affect sleep, and the effects are 
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comparable. Although people tend to have prolonged total sleep duration with increasing air pollutant concentra-
tions, their sleep quality might remain poor because of the reduction in deep sleep.

Keywords  Air pollution, Big data, Sleep, Wearable device

Introduction
Sleep is an important factor affecting health, similar to 
exercise and diet [1]. High-quality sleep is crucial for 
maintaining health and quality of life. Sleep disturbances 
have risen to be one of the major public health concerns.

Sleep disturbances are associated with numerous 
health problems such as cardiovascular events, diabetes, 
mental disorders, and cancer [2]. Previous publications 
[3, 4] have demonstrated the relationship between sleep 
duration and mortality using a U- shaped curve, whereby 
both short (< 7 h) and long (> 9 h) sleep duration could 
increase mortality risk, particularly in Asian populations 
[4]. Furthermore, sleep stability is potentially modifi-
able risk factors for cardiometabolic diseases. Decreased 
inter-daily stability increases hypertension prevalence 
and blood pressure [5]. Increased night-to-night sleep 
variability has been associated with an increased risk of 
adiposity, metabolic syndrome, and type 2 diabetes [6].

Numerous factors influence sleep quality, such as age, 
sex, physical activity, psychological or physiological con-
ditions, and environmental factors [7]. Air pollution, 
another major public health concern, has been reported 
to affect sleep and has similar consequences to other 
diseases, such as cardiopulmonary health [8], diabetes 
[9], and cancer [10]. In particular, emerging research 
has recently focused on the effects of outdoor air pollu-
tion on sleep, as 91% of the worldwide population lives 
in places where the World Health Organization (WHO) 
ambient air quality guideline levels are not met [11].

Nevertheless, the relationship between ambient air pol-
lution and sleep quality remains ambiguous and incon-
sistent. Many studies using questionnaires have revealed 
that poor air quality is associated with poor sleep quality 
[12]. Increased particulate matter with a diameter of 2.5 
μm or less (PM2.5), particulate matter with a diameter of 
10 μm or less (PM10), and nitrogen dioxide (NO2) con-
centrations are correlated with a reduction in daily sleep 
hours among college freshmen [13]. However, other stud-
ies have reported that air pollution deterioration is asso-
ciated with increased sleep duration [14, 15] and wake 
times during sleep [16]. Long-term exposure to black car-
bon may induce shorter sleep duration in men and those 
with low socioeconomic status but longer sleep duration 
in blacks [17].

These discrepancies may result from different popu-
lations, study designs, pollutants, and, more impor-
tantly, methodologies of sleep evaluation. Almost no 

large-sample studies have employed objective sleep-scor-
ing systems. Instead, most researchers have used a self-
reported questionnaire or the Pittsburgh Sleep Quality 
questionnaire. The questionnaire tools will introduce bias 
due to their limitations and the participants’ cognition. 
With technological innovation, wearable devices, such as 
bracelets or watches, have owned the function to record 
and monitor wake or sleep in different stages [18–20], 
thus providing an excellent and convenient methodol-
ogy for sleep evaluation. We analyzed a total of 1,245,817 
nights of sleep records from a type of consumer brace-
let in China between 2017 and 2019 and controlled sev-
eral common influencing factors of sleep and air quality 
to clarify the long- and short-term effects of ambient air 
pollution on sleep.

Methods
Study population
A retrospective analysis was performed using data 
from consumer bracelets (Zepp Health Corp.) in China 
between 2017 and 2019. They were collected in an anony-
mous and aggregated dataset without personal identifiers 
such as names, email addresses, and cell phone numbers. 
Random strings were used to identify the sleep records 
for each night. The study was approved by the IRB of the 
Peking University First Hospital (2020-635).

In the real world, users often wear bracelets intermit-
tently and irregularly, particularly during sleep. Only 
few people can wear bracelets continuously over a long 
period as the air quality fluctuates. For the study popula-
tion, most people resided in a relatively fixed community, 
and only a small portion migrated or traveled frequently. 
Therefore, considering the privacy policy, we took each 
night’s record as a research object and used the air qual-
ity data collected at the sleep tracking site for lag analy-
sis. We analyzed 1,245,817 nights of sleep data from 7682 
participants for 3 years.

Covariates
Several factors could influence sleep and were controlled 
in the statistical analysis, including registered sex, age, 
body mass index (BMI), city development level, altitude, 
season, and the type of night in which sleep records were 
tracked. The cities (five tiers) were classified based on 
development level according to business resource con-
centration, pivot function, the activity of urban residents, 
lifestyle diversity, and future plasticity, which has been 
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widely quoted in China [21]. The sleep tracking seasons 
were divided into quarters in this study because of the 
large latitude span in China. Generally, in most parts of 
China, the first quarter (January to March) includes part 
of winter and early spring, the second quarter (April to 
June) includes spring and early summer, the third quarter 
(July to September) includes summer and early autumn, 
and the fourth quarter (October to December) includes 
the majority of autumn and winter. Additionally, we 
defined two types of night recordings: weeknight (Sunday 
to Thursday, the last night of the legal holidays) and night 
of rest (Friday, Saturday, the day before the legal holidays 
to the penultimate night).

Data cleaning
We eliminated unreasonable or extreme values according 
to the following criteria to obtain eligible records from 
the raw data: registered age < 14 years, registered BMI 
< 15 kg/m2 or ≥ 45 kg/m2, total sleep duration ≤ 180 min 
or ≥ 720 min, mean heart rate of 24 h, or mean heart rate 
during sleep > 120 bpm.

Sleep parameters
Sleep parameters recorded by the bracelets included total 
sleep duration (minutes of sleep per night for each partic-
ipant), deep sleep duration, light sleep duration, times of 
wake after sleep onset (WASO), and duration of WASO. 
We used several ratios in the analysis to reduce the influ-
ence of total sleep duration on sleep parameters, such 
as deep sleep duration/total sleep duration, deep sleep 

duration/light sleep duration, times of WASO per hour 
of sleep, and durations of WASO per hour of sleep.

Ambient air pollution data
The origin data of the main pollutants were collected 
from the National Urban Air Quality Real-time Publish-
ing Platform (http://​106.​37.​208.​233:​20035), linked to the 
open website of the Ministry of Ecology and Environ-
ment of the People’s Republic of China (https://​www.​
mee.​gov.​cn/​hjzl/). This website has been closed recently, 
and the corresponding data have been updated to a new 
website (http://​air.​cnemc.​cn:​18007/). These data were 
collected and reported every hour. This study measured 
the effect of short-term exposure with different lag days 
from Lag0 (record day) to Lag0-6. For instance, Lag0–6 
represents the 7-day moving average of air pollutant 
concentrations between the record day and the 6th day 
before the record. Lag0-364 calculated a total of 365-day 
moving averages of air pollutant concentrations between 

the record day and the 364th day before the record, rep-
resenting long-term exposure. The period of long-term 
exposure data for all participants ranged from 3 years 
(2016–2018). The data for PM2.5, PM10, NO2, sulfur diox-
ide (SO2), and carbon monoxide (CO) were calculated 
from the mean estimated 24 h concentrations, and ozone 
(O3) was calculated from the maximum 8-h mean val-
ues. In addition, we matched the participants’ residential 
cities with the air pollution exposure data of the corre-
sponding cities on the above website.

Statistical analysis
We assessed normality and described distributions as 
mean, standard deviation (SD), minimum, and maximum 
for continuous variables or proportions for categorical 
variables. Mixed-effects model analysis was performed 
to investigate the associations of sleep parameters with 
ambient air pollution on both short- and long-term expo-
sures because it allows the analysis of data from multiple 
measurements in one participant. Considering the high 
or moderate correlations among air pollutants (Supple-
mentary Table S1), only single-pollutant models were 
used in our study to avoid collinearity.

The effect estimates were expressed as the change in 
sleep parameters per 1-IQR increase in each air-pollut-
ant concentration with a random effect for each partici-
pant and fixed linear effects for air pollution and other 
covariates. Air pollutants  were entered separately into 
single-pollutant models. The mixed-effects model was 
constructed using Eq.

where Yij represents the sleep parameters, β0 is the 
fixed-effect intercept term, β0j is the random-effect inter-
cept term, X0ij represents each air pollutant concentra-
tion, β1 is the regression coefficient for air pollutants, 
β2…βN are the regression coefficients for the covariates 
in the model, j represents the study participant, i iden-
tifies the sleep record, and εij is the residual error term. 
The results were presented as regression coefficients and 
95% confidence intervals (CI). Additionally, the model 
was adjusted for other covariates, as noted previously. 
Subgroup analyses were conducted according to sex, age, 
season, and sleep duration. A cross-product term was 
added to the mixed-effects model to assess the signifi-
cance of the interaction.

Given the bias caused by repeated measures of pol-
lutant exposures and sleep parameters under the exist-
ing data structure, we further designed two stratified 
analyses to reduce repeated measures and consider 
individual variation, while still using the mixed-effects 

Yij = �0 + �0j + �1X0ij + �2X1ij + �3X2ij + �4X3ij +…… �NXnij + �ij ;

http://106.37.208.233:20035
https://www.mee.gov.cn/hjzl/
https://www.mee.gov.cn/hjzl/
http://air.cnemc.cn:18007/
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model. Figure  1 shows the two methods of strati-
fied analysis. On the one hand, the sleep data for each 
participant were arranged in ascending chronological 
order. Then, starting from the first data of each subject, 
a piece of record was extracted every 7 days and 365 
days intervals to analyze the impact of short- and long-
term exposure on sleep. Alternatively, we regarded each 
continuous sleep record of each subject as a dataset and 
averaged the sleep parameters of each dataset for the 
analysis of long- and short-term effects. For the analysis 
of long-term effects, we averaged the sleep parameters 
of each subject’s first dataset and calculated air pollut-
ant exposure based on the time of the first record in the 
dataset. Ultimately, only one piece of data was collected 
for each participant. For the analysis of short-term 
effects, we averaged the sleep parameters of the first 
7 days of each dataset for each subject if the consecu-
tive days of the dataset were ≥ 7 days. The time inter-
val between the first record of each dataset and the last 
record of the previous valid dataset exceeded 7 days. If 
the consecutive days of the dataset were fewer than 7 
days, the average of all sleep parameters in the dataset 
was calculated. Through these two stratified analyses, 
we sufficiently reduced the repeated measures of out-
comes and exposures and took individual variation into 
account by calculating the mean value of sleep param-
eters, thus further verifying the stability of the overall 
data results.

Analyses were conducted using the SPSS statistical 
software version 27 and R software version 3.6.2 with a 
p-value < 0.05 considered statistically significant for a 
two-tailed test.

Results
Characteristics of the study population
The characteristics of the study population are shown 
in Table  1. Our study comprised 1,245,817 accumu-
lated sleep records over 3 years from 1005 nights of 
sleep tracking among 7682 participants, 70.6% of which 
were weeknights. There were relatively even between 
seasons in this analysis across the 3 years, although 
the highest proportion of records came from autumn 
(27.8%). Over half of the study population resided in 
first-tier or super-first-tier cities and came from low-
elevation regions. The mean age of the participants was 
47.7 ± 13.8 years old. Individuals aged 18 to 64 years 
provided the most nights of the population. Males 
accounted for 74.1% of this analysis. The mean BMI of 
the study population was 24.4 ± 3.2 kg/m2, predomi-
nantly in the BMI normal group (43.5%).

Figure  2 a and b illustrate the temporal distribution 
of the overall data. The period of the data was from 
April 2017 to December 2019, with the largest amount 
derived from 2019. Specifically, the data volume peaked 
in March 2019, including 58,012 data from 3026 partic-
ipants. Figure 2c shows the distribution of the number 

Fig. 1  Two methods for stratified analyses
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of participants in the continuous records of different 
lengths. The number of consecutive record days ranged 
from 2 to 113 days. In terms of the overall trend, the 
longer the consecutive days, the fewer the participants.

Sleep parameters
The sleep parameters recorded by the bracelets are 
summarized in Table  2. Of the overall nights studied, 
the mean total sleep duration was 419.7 ± 87.3 min, 
ranging from 180 to 720 min. The deep sleep dura-
tion was 108.49 ± 49.77 min, and the light sleep dura-
tion was 311.20 ± 80.44 min, respectively. The average 
proportion of deep sleep in total sleep duration was 
25.9% ± 10.9%, and the ratio of deep to light sleep dura-
tion was 0.38 ± 0.24. The average times of WASO per 
night of sleep were 0.90 ± 1.1. The duration of WASO 
was 9.27 ± 19.69 min, which accounted for 2.3% ± 5.09% 
of total sleep.

Ambient air pollutant concentrations
Table 3 shows the distribution of short- and long-term 
air pollutant levels in this study. The mean long-term 
concentrations of PM2.5, PM10, NO2, O3, SO2, and CO 
were 45.3 ± 13.7μg/m3, 77.5 ± 25.9μg/m3, 39.8 ± 9.0μg/
m3, 61.0 ± 9.1μg/m3, 13.0 ± 7.7μg/m3, and 0.9 ± 0.2μg/
m3 respectively. These values were higher than the 
WHO air quality guidelines [11]. Even the annual mini-
mum of PM2.5 and PM10 exceeded the WHO standard 
(5  μg/m3 for PM2.5 and 15  μg/m3 for PM10). Figure  3 
presents the spatial distribution of long-term air pol-
lutant concentrations in participants’ residences. It was 
found that the participants mostly lived in developed 
regions where air pollution was severe, and the popula-
tion density was high.

The 7-day moving average levels of PM2.5, PM10, NO2, 
O3, SO2, and CO were 42.2 ± 25.2μg/m3, 73.0 ± 40.4μg/
m3, 38.3 ± 14.8μg/m3, 60.3 ± 27.4μg/m3, 11.2 ± 8.1μg/m3, 
and 0.8 ± 0.3μg/m3 respectively. The trend for each pollut-
ant varied in designative cumulative lag days. The moving 
averages of PM2.5, PM10, and NO2 gradually increased as 
the recording day approached (Lag0). The moving aver-
age of O3 concentration was lowest in Lag0-3 and had two 
peaks on Lag0 and Lag0-6, showing a U-shaped curve. 
The moving average of SO2 levels peaked at Lag0 and 
Lag0-3 and gradually decreased during the other periods. 
The moving averages of CO were essentially the same for 
cumulative lag days. In addition, a previous study [22] 
illustrated that the closer the cumulative days are to the 
record day, the larger the variations are for the values. 
Similar patterns were observed in our study.

Table 1  Characteristics of research data

Abbreviations: IQR Interquartile range, SD Standard deviation

Items Number of participants

All participants 7682

Gender of participants, no. (%)

  Male 5689 (74.1%)

  Female 1993 (25.9%)

Age of participants, mean (SD), years 47.7 (13.8)

Age groups of participants, no. (%)

  < 18 years 45 (0.6%)

  18–44 years 4018 (52.3%)

  45–64 years 2636 (34.3%)

  ≥ 65 983 (12.8%)

BMI of participants, mean (SD), kg/m2 24.4 (3.2)

BMI groups of participants, no. (%)

  Low weight (< 18.5) 243 (3.2%)

  Normal (18.5–23.9) 3340 (43.5%)

  Overweight (24–27.9) 2993 (39.0%)

  Obesity (≥ 28) 1106 (14.4%)

City groups of participants, no. (%)

  Super first-tier cities 2426 (31.6%)

  First-tier cities 1811 (23.6%)

  Second-tier cities 1488 (19.4%)

  Third-tier cities 960 (12.5%)

  Fourth-tier cities 690 (9.0%)

  Fifth-tier cities 307 (4.0%)

Altitude groups of participants, no. (%)

  ≥ 1000 m 389 (5.1%)

  < 1000 m 7293 (94.9%)

Smoking, no. (%)

  Never 5338 (69.5%)

  Occasional 929 (12.1%)

  Regular 345 (4.5%)

  Daily 1070 (13.9%)

Drinking, no. (%)

  Never 2300 (29.9%)

  Occasional 4419 (57.5%)

  Regular 774 (10.1%)

  Daily 189 (2.5%)

Total nights of sleep tracking, no. 1005

Accumulative sleep records, nights 1,245,817

Type of the night sleep records tracked in, no. (%)

  Weeknights 879,289 (70.6%)

  Nights of rest day 366,528 (29.4%)

Seasons sleep records tracked in, no. (%)

  Spring (March to May) 326,332 (26.2%)

  Summer (June to August) 284,066 (22.8%)

  Autumn (September to November) 346,791 (27.8%)

  Winter (December to February) 288,628 (23.2%)
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Overall data analysis

1.	 The long-term effects of ambient air pollutants on 
sleep parameters

Figure  4 demonstrates the association between long-
term exposure to air pollutants and sleep parameters. 
The adjusted mixed-effect models showed that a higher 
concentration of each air pollutant was associated with 
longer total sleep and light sleep durations, whereas with 

reduced deep sleep duration and proportion. Nitrogen 
dioxide had the greatest impact on the total sleep dura-
tion. Every 1-IQR increase in NO2 exposure prolonged 
the total sleep duration by 8.7 (8.08 to 9.32) minutes. 
Carbon monoxide was most closely related to both deep 
and light sleep duration, with each 1-IQR increase in CO 
shortening deep sleep duration by 5.0 (− 5.13 to − 4.89) 
minutes and prolonging light sleep duration by 7.7 (7.46 
to 7.85) minutes. Statistically, elevated concentrations 
of each air pollutant significantly reduced the times of 

Fig. 2  a–c Characteristics of data distribution. a, b The temporal distribution of participants and sleep records respectively. c The distribution of the 
number of participants in the continuous records of different lengths

Table 2  Summary of parameters of the study population during the recording period

Abbreviations: IQR Interquartile range, SD Standard deviation, WASO Wake after sleep onset

Sleep parameters Mean (SD) Median (IQR) Min Max

Total sleep duration, min 419.69 (87.29) 423 (366,476) 180 720

Deep sleep duration, min 108.49 (49.77) 104 (72,139) 8 505

Light sleep duration, min 311.20 (80.44) 311 (257,364) 37 680

Deep sleep duration/light sleep duration, % 0.38 (0.24) 0.34 (0.22,0.49) 0.01 9.22

Deep sleep duration/total sleep duration, % 25.94 (10.87) 25.14 (18.12, 32.87) 1.37 91.65

Times of WASO 0.90 (1.10) 1 (0, 1) 0 17

Times of WASO per hour of sleep 0.13 (0.16) 0.12 (0, 0.20) 0 3.31

Duration of WASO, min 9.27 (19.69) 0 (0, 7) 0 456

Duration of WASO/total sleep duration, % 2.28 (5.09) 0 (0, 1.73) 0 86.51
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Fig. 3  a–f Spatial distribution of long-term air pollutant concentration in participants’ residences. The red dots represent participants’ residential 
cities, and the color depth represents the concentration of each air pollutant. The World Health Organization air quality guidelines 2021 for PM2.5, 
PM10, NO2, O3, SO2, and CO concentrations were 5 μg/m3 (annual), 15 μg/m3 (annual), 10 μg/m3 (annual), 100 μg/m3(8-h average), 40 μg/m3 (24-h 
average), and 4 mg/m3 (24-h average), respectively

Fig. 4  a–g Associations between sleep parameters and long-term exposures to ambient air pollutants. Data are β (95% CI). β indicates partial 
regression coefficient. Estimates were associated with per 1-interquartile range increase in concentration of each pollutant. Adjusted for age, sex, 
BMI, city development level, altitude, season, and the type of night. *p < 0.05. CI, confidence intervals; CO, carbon monoxide; NO2, nitrogen dioxide; 
O3, ozone; PM2.5, particulate matter with aerodynamic diameter ≤ 2.5 μm; PM10, particulate matter with aerodynamic diameter ≤ 10 μm; SO2, sulfur 
dioxide; WASO, wake after sleep onset
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WASO per hour of sleep and the proportion of WASO 
duration, except for ozone, which was in contrast to a 
previous publication [16]. Although the regression coef-
ficients were relatively low, they may still be meaningful 
because WASO rarely occurs during sleep.

2.	 The short-term effects of ambient air pollutants on 
sleep parameters

Figure  5 presents the associations between ambient 
air pollutant levels and sleep parameters on cumulative 
0–6 days (from Lag0 to Lag0–6), adjusting for confound-
ers. We observed that although the effect of the same air 
pollutant on sleep parameters on different cumulative 
days was inconsistent, the effect of each air pollutant on 
sleep parameters had a certain degree of similarity. Spe-
cifically, the majority of air pollutants had the greatest 
impact on sleep parameters at Lag0-6, including gener-
ally positive associations with total sleep and light sleep 
duration, and negative associations with both deep sleep 
and WASO, except for ozone, which had a negative asso-
ciation with total sleep duration and no significant asso-
ciation with light sleep duration. Conversely, some air 
pollutant (PM2.5, NO2, SO2, CO) levels were positively 
associated with deep sleep duration in Lag0-5, while 
their impacts were significantly smaller than those in 

Lag0-6. In summary, the cumulative effects from Lag0 
to Lag0-5 were generally unset and insignificant. In con-
trast, the cumulative effects at Lag0-6 tended to become 
significant and comparable to the long-term effects but 
relatively less.

3.	 Subgroup analyses of the associations between long-
term exposure to ambient air pollutants and sleep 
parameters

Since the short-term effects were unset and insig-
nificant, we only estimated the association between 
long-term air pollution and sleep parameters classified 
according to age, sex, sleep duration, and season (Supple-
mentary Table S2, S3, S4, S5).

First, the majority of ambient air pollutants in dif-
ferent subgroups still had a significant impact on 
sleep, which is generally consistent with the impact 
on the overall population. Second, most air pollut-
ants’ effects on sleep parameters were significantly 
different between subgroups. When classified by sex 
(Supplementary Table S2), the associations were more 
apparent in the female group. In terms of age (Supple-
mentary Table S3), the effects on total sleep, deep sleep, 
and light sleep durations were greater in the younger 
age group (age < 45 years), whereas the effect on WASO 

Fig. 5  a–g Associations between sleep parameters and short-term exposure to ambient air pollutants. Data are β (95% CI). β indicates partial 
regression coefficient. Estimates were associated with per 1-interquartile range increase in concentration of each pollutant. Adjusted for age, sex, 
BMI, city development level, altitude, season, and the type of night. *p < 0.05. CI, confidence intervals; CO, carbon monoxide; NO2, nitrogen dioxide; 
O3, ozone; PM2.5, particulate matter with aerodynamic diameter ≤ 2.5 μm; PM10, particulate matter with aerodynamic diameter ≤ 10 μm; SO2, sulfur 
dioxide; WASO, wake after sleep onset
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was more pronounced in older people (age ≥ 45 years). 
For those with longer sleep (≥ 7 h), the impacts on 
deep and light sleep durations were more remarkable. 
Nevertheless, the impact on deep sleep proportion 
(the ratio of deep sleep to total sleep and light sleep) 
was stronger in the shorter sleep duration group (< 7 
h) (Supplementary Table S4). Considering the seasons 
(Supplementary Table S5), the effects of air pollutants 
on total sleep and light sleep durations were more sig-
nificant in the cold seasons. The effects on WASO were 
more pronounced in the warm season. Finally, an inter-
esting phenomenon is that the effects of ozone on some 
sleep parameters in the subgroups were inconsistent 
with the overall effects. The significance of its effect in 
different subpopulations showed partly opposite trends 
to those of other pollutants; for instance, ozone expo-
sure prolonged deep sleep duration in females, younger 
individuals, and those in cold seasons. Additionally, the 
effect was greater in males.

Stratified analyses
We conducted stratified analyses, as described above, to 
reduce repeated measures of outcomes and exposures 
meanwhile accounting for individual variation.

First, we used the method for sampling at time 
intervals of 7 days and 365 days. After data screening, 
11,413 records remained for the analysis of long-term 
effects, and 181,392 records were for the analysis of 
short-term effects. The results were generally similar 
to the overall results (Fig. 6, Supplementary Figure S1). 
The long-term effects of CO on deep and light sleep 
duration remained strongest, with each 1-IQR increase 
in CO shortening 4.8 (− 6.05 to − 3.59) minutes of 
deep sleep and prolonging 6.4 (4.42 to 8.41) minutes of 
light sleep. Although the effects of individual air pol-
lutants on some sleep parameters lost statistical sig-
nificance, they remained consistent with the trends in 
the overall results. For instance, all pollutants had the 
trend of prolonging the total sleep duration and short-
ening the duration and proportion of WASO.

Second, we adopted the method for calculating the 
averages of the outcome parameters. In total, 7682 and 
114,194 records were utilized for long- and short-term 
effect analyses. The results were also consistent with 
the overall results, even though the associations were 
relatively fewer (Fig.  7, Supplementary Figure S2). For 
example, each 1-IQR increase in CO exposure was asso-
ciated with 4.1 (− 5.28 to − 3.01) minutes shorter deep 
sleep and 5.7 (3.88 to 7.48) minutes longer light sleep. 

Fig. 6  a–g Stratified analysis 1—Effect of long-term pollutant exposure on sleep parameters. Use the method of extracting records every 365 
days intervals. Data are β (95% CI). β indicates partial regression coefficient. Estimates were associated with per 1-interquartile range increase in 
concentration of each pollutant. Adjusted for age, sex, BMI, city development level, altitude, season, and the type of night. *p < 0.05. CI, confidence 
intervals; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter with aerodynamic diameter ≤ 2.5μm; PM10, particulate 
matter with aerodynamic diameter ≤ 10 μm; SO2, sulfur dioxide; WASO, wake after sleep onset
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In summary, stratified analyses proved the robustness of 
the overall results from multiple perspectives.

Discussion
In this real-world big data analysis of sleep records from 
consumer wearable devices in the Chinese population, 
greater exposure to both long- and short-term ambient air 
pollution was associated with longer total sleep duration 
and reduction in deep sleep and awake time during sleep.

To our knowledge, this is the first study to illuminate 
the associations between ambient air pollution and sleep 
characteristics through big data analysis of users of a 
popular sleep tracker on this platform for 3 years and 
over 1 million nights. Additionally, this study not only 
focused on the effects of long-term air pollution expo-
sure but also examined the relationship between short-
term air pollution exposure and sleep outcomes, which 
remains limited in the current literature. Furthermore, 
this study is one of the few studies to evaluate the general 
effect of ambient air pollution on sleep, including inhal-
able particulate matter (PM2.5, PM10), nitrogen dioxide, 
sulfur dioxide, carbon monoxide, and ozone.

Recently, an increasing number of studies have focused 
on the effects of air pollution exposure on sleep health, 
demonstrating an overall adverse effect of various air 

pollutants on sleep across the lifespan [23]. However, 
these findings largely depend on self-report question-
naires [12–14, 24–26], which have been proven to vary 
widely from objective sleep trackers. As an emerging 
technical device, bracelets are portable, commercially 
available, and feasible to detect sleep and have therefore 
become increasingly popular among the general popu-
lation in recent years, presenting researchers with an 
opportunity to analyze the big data captured by these 
devices and explore the effects of long-term and short-
term air pollution exposure on population sleep health.

Long‑term exposures and sleep characteristics
In our study, long-term exposure to each air pollutant 
was positively associated with total sleep duration and 
negatively associated with deep sleep duration. Ours is 
the first large-scale study to demonstrate the associa-
tion of deep sleep with ambient air pollution exposure, 
revealing that although people tend to have prolonged 
total sleep duration with increasing air pollutant con-
centrations, their sleep quality might remain poor due 
to the reduction of deep sleep. Deep sleep is a homeo-
static process that reflects the restorative role of sleep 
[27]. Increasing evidence supports the crucial role of 
deep sleep in modulating a multitude of physiological 

Fig. 7  a–g Stratified analysis 2—Effect of long-term pollutant exposure on sleep parameters. Use the method of calculating the average value of 
the first data set of each subject. Data are β (95% CI). β indicates partial regression coefficient. Estimates were associated with per 1-interquartile 
range increase in concentration of each pollutant. Adjusted for age, sex, BMI, city development level, altitude, season, and the type of night. *p < 
0.05. CI, confidence intervals; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter with aerodynamic diameter ≤ 2.5μm; 
PM10, particulate matter with aerodynamic diameter ≤ 10 μm; SO2, sulfur dioxide; WASO, wake after sleep onset
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processes, including memory consolidation [28], energy 
conservation [29], clearance of metabolites [30], and 
immunity [31]. The relationship between air pollutant 
concentration and total sleep duration remains contro-
versial. Our result is in line with findings from a small 
prospective cohort study in the USA that recruited 
98 participants with previous a diagnosis of episodic 
migraines and demonstrated that greater ozone expo-
sure resulted in approximately 7 min longer sleep dura-
tion at night [32]. However, the study population was 
not representative, and the duration of air pollution 
exposure was insufficient. Contrarily, other studies have 
demonstrated negative associations between higher 
long-term air pollutant levels and sleep duration, 
but in specific subpopulations such as female teach-
ers [33], preschoolers [34], and college freshmen [13], 
most of which were assessed by self-reported question-
naires. Furthermore, several studies [35–40] examined 
the specific effects of ambient air pollutant exposure 
on sleep-disordered breathing (SDB), which is gener-
ally measured by the apnea-hypopnea index (AHI) and 
oxygen desaturation index (ODI). They reported a posi-
tive association between SDB and air pollution. A sig-
nificant deficit in deep sleep has also been observed in 
patients with SDB [41]. These studies might suggest a 
mechanism for the negative association between air 
pollutants and deep sleep duration.

Another novel point of our study lies in the investiga-
tion of the associations between both arousal time and 
arousal frequency and ambient air pollution, showing 
that elevated concentrations of air pollutants reduced 
times of WASO (wake after sleep onset) and duration 
of WASO, whereas ozone had no significant effect on 
WASO. A limited number of previous studies have exam-
ined the association between air pollution and WASO, 
but in specific populations with small sample scales and 
shorter observation times. A study of 98 participants with 
episodic migraine exploring the association between air 
pollution exposure and WASO over an average of 45 days 
reported modest positive associations between ozone 
and WASO. In contrast, lower SO2 and CO were associ-
ated with high WASO [32]. Another study, contrary to 
our conclusion, reported that PM2.5 levels in metal fumes 
were positively associated with wake times during sleep, 
as measured by actigraphy, among 16 welding workers 
in China [16]. Our results are based on big-data analysis 
of long-term exposure duration. Therefore, we hypoth-
esized that even if elevated concentrations of ambient 
air pollutants increase total sleep and reduce WASO, the 
proportion of deep sleep decreases, thus leading to low 
sleep efficiency and poor sleep quality. This hypothesis 
might be confirmed from the other aspect. In 39,259 Chi-
nese rural residents, poor sleep quality, evaluated by the 

Pittsburgh Sleep Quality Index (PSQI), was associated 
with an increase in long-term exposure to PM2.5, PM10, 
and NO2 [12]. In 59,574 children from northeastern 
China, sleep disorders were associated with increased 
pollutants [26].

Short‑term exposures and sleep characteristics
In the present study, the effects of short-term exposure 
on sleep characteristics were also investigated. We found 
that the effects of short-term exposure to all air pollutants 
were most pronounced at Lag0-6 and partially resemble 
the long-term effects, including longer total sleep and 
light sleep duration, shorter deep sleep duration, and 
WASO. A study from China, including 12,000 freshmen, 
observed a positive association between weekly PM2.5 
exposure and sleep duration in self-reported question-
naires [14], which was in line with our study. From Lag0 
to Lag0-5, their impacts were somewhat unset and insig-
nificant. To the best of our knowledge, this is the first 
study to observe associations between multiple short-
term air pollutant exposures and sleep parameters, sug-
gesting that we ought to emphasize the negative impact 
of short-term air pollutant exposure on sleep in the 
meantime, as merely a 1-week exposure has the potential 
to evolve toward a similar long-term exposure.

The majority of epidemiological studies have explored the 
association between long-term exposure and sleep; how-
ever, few studies have highlighted the association between 
short-term exposure and sleep. Therefore, this study is also 
novel because we not only evaluated the effects of both 
long- and short-term exposures but also inquired into their 
intrinsic relationship. In 4312 adults from Northern Tai-
wan urban areas, Shen and colleagues [35] examined the 
associations between daily, weekly mean, and annual PM2.5 
exposure and SDB. The study found that both long- and 
short-term exposure increases in PM2.5 levels were associ-
ated with SDB, and the effect of long-term PM2.5 exposure 
was more significant. In other studies examining the effects 
of long- and short-term air pollution exposure on blood 
pressure [42], cardiovascular diseases [43], and psychiatric 
disorders [44], consistency between long- and short-term 
effects was also observed to some extent among which was 
more pronounced in the long-term. The stronger effect of 
long-term exposure can be explained by the cumulative 
damage of short-term exposure.

Subgroup analyses of long‑term effects
The results of subgroup analyses are similar to the analy-
sis results of the total population, which further proves 
the credibility of our conclusion that the influence of 
ambient air pollution on sleep is consistent in different 
seasons and populations with different genders, ages, and 
sleep durations.
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Furthermore, when classified by sex, the relation-
ship between long-term exposure to air pollution and 
sleep was generally greater in females, which is in line 
with previous studies [45–47]. On the one hand, long-
term exposure to ambient air pollution was identified 
as a risk factor for mental disorders, such as depression 
[48]. Sleep disorder is frequently regarded as a symp-
tom of a sub-health psychological state. Correspond-
ingly, women are relatively more emotional and, thus, 
more susceptible to the effects of air pollution on sleep. 
On the other hand, a recent study reported that com-
pared to male patients with OSA, stronger effects of air 
pollution on SDB parameters were observed in female 
patients [46]. This evidence not only supports our 
results but more significantly suggests that we should 
pay particular attention to the impact of air pollution 
on women’s sleep.

Age effect has also been investigated in our study. 
More significant associations between long-term 
air pollutant exposure and sleep parameters were 
observed in the younger population. Previous Chinese 
studies focusing on the association between long-term 
exposure to air pollution and sleep quality [12] or dia-
betes [9] also reported stronger effects in the younger 
subgroup. One plausible explanation for this dis-
crepancy might be the activity pattern. Young people 
have more work and entertainment activities and are 
exposed to more air pollutants while aging individu-
als are less exposed to ambient air pollutants due to 
physical limitations. Nevertheless, the effect of air pol-
lution on WASO is more pronounced in older adults. 
Increasing involuntary awakening during sleep is one 
of the hallmarks of human sleep alterations with age. 
Thus, fragile regulation of sleep/wakefulness and sleep 
homeostasis in older people might be more vulnerable 
to air pollution [49].

Another innovation of our study lies in stratifica-
tion according to sleep duration. This is the first study 
to focus on the impact of air pollution on populations 
with different sleep durations. Both short (< 7 h) and 
long sleep durations (> 9 h) seem to be detrimental to 
health. Because few people in our study slept for more 
than 9 h, we classified sleep duration by 7 h as the 
threshold. Subgroup analyses showed that the impact 
of air pollution on sleep was greater in those who slept 
for more than 7 h. Participants who sleep shorter than 
7 h might frequently suffer from other factors that 
more significantly affect sleep duration, such as various 
activities, working pressure, insomnia, and other men-
tal and somatic disorders, thus obscuring the impact 
of air pollution on sleep. But the impact on deep sleep 
proportion was stronger in the shorter sleep dura-
tion group, which might be due to that shorter sleep 

durations influenced the results of such ratios rather 
than a direct effect of air pollutants.

Of note, the effects of ozone on sleep indicators are 
not entirely consistent with the overall effect, and the 
significance of its effect in different subgroups has 
a partially opposite trend to that of other air pollut-
ants. Previous studies investigating the effects of air 
pollution on human health, such as arterial pressure 
[50], blood lipids [51], and circulating inflammatory 
markers [52], similarly found discrepant character-
istics in the effects of ozone. However, to our knowl-
edge, there is limited data to explain this phenomenon. 
We inferred that these complicated associations are 
affected by distinct biological mechanisms of diverse 
air pollutants [23]. In addition, the negative correlation 
between ozone concentration and other air pollutants 
might also play a role. Therefore, further studies are 
warranted.

Strengths and limitations
The strengths of our analysis include the big data used to 
perform the analyses of sleep data from a large and repre-
sentative population over 3 years. The effects of multiple 
common ambient air pollutants on sleep were compre-
hensively studied, and several factors strongly influencing 
sleep were controlled. We also investigated the effects of 
short- and long-term air pollution exposure in the same 
sample compared their similarities and differences and 
analyzed their intrinsic associations. Moreover, the asso-
ciation between deep sleep and air pollutant exposure 
was innovatively highlighted. Last but not least, we con-
ducted multifaceted subgroup analyses to demonstrate 
the credibility of our results and compare discrepan-
cies in the effects of air pollutants on sleep according to 
population characteristics, sleep duration, and seasonal 
conditions.

Several limitations should be acknowledged. First, 
although wearable sleep-tracking devices have been 
proven to be reasonably sensitive and can identify the 
sleep cycle with a certain degree of accuracy [53, 54], 
some recent studies have reported that they tend to 
underestimate sleep disruptions and overestimate total 
sleep times compared to polysomnography (PSG) [54, 55]. 
Second, we did not test the accuracy of this sleep-tracking 
device by using PSG or medical actigraphy. Third, because 
of the intermittent wearing of bracelets in the real world 
and the privacy policies of producers, we cannot continu-
ously and regularly analyze the sleep of individuals for a 
sufficient duration. As a consequence, all sleep data were 
studied in units per night rather than conventionally per 
person. However, big data analysis and the mixed-effects 
model incorporate overall data, which can reduce con-
founding factors to some extent. The corresponding sleep 
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research applied a similar analysis method [56]. Fourth, 
exposure levels were assigned using data from the near-
est air monitor rather than personal air pollution expo-
sure data, which may have misclassified some participants 
by randomly underestimating exposure in some and 
over-estimating exposure in others, and also overlooked 
the indoor air pollutant exposures. Fifth, although we 
adjusted for several confounders, there is still a possibility 
that unmeasured factors, such as temperature, humidity, 
traffic noise, and light, partly contributed to the associa-
tions. It should be clarified that we have obtained tem-
perature and humidity data from multiple air monitoring 
stations across the country. However, because our study 
covered a wide geographic range of provinces and cities 
in China, the temperature and humidity data from decen-
tralized monitoring stations cannot accurately reflect the 
actual exposure of the participants. Therefore, we did not 
adopt the temperature and humidity data in the study but 
took the season as a covariate, which is closely related to 
both temperature and humidity. Sixth, we did not con-
sider multi-pollutant models because of strong correla-
tions between the studied air pollutants. Seventh, we 
could not collect all the information of participants due to 
the limitations of the device app. Important information 
on comorbidities is missing. It cannot be excluded that the 
findings are related to subjects with diseases and maybe 
healthy persons show no alterations. Finally, repeated 
measures of outcomes and exposures might lead to poten-
tial bias, we thus supplemented the stratified analyses to 
demonstrate the robustness of the overall results.

Conclusions
We analyzed sleep data from over 1 million nights 
captured by a consumer wearable sleep-tracking 
device over 3 years in the Chinese population. Our 
findings show that both short- and long-term expo-
sure to ambient air pollution is associated with sleep 
characteristics, among which the cumulative effects of 
1-week exposure tended to be comparable to those of 
long-term exposure. Generally, although people tend 
to have prolonged total sleep duration with increasing 
air pollutant concentrations, their sleep quality may 
remain poor due to the reduction of deep sleep. Sub-
group analyses indicated greater effects on the indi-
viduals who were female, younger (< 45 years), slept 
longer (≥ 7 h), and in cold seasons, but the pattern of 
effects was mixed. More evidence should confirm these 
associations and clarify the biological mechanisms. In 
addition, researchers and sleep-tracking developers 
could collaborate on more stable sleep-tracking and 
accurate algorithms to facilitate large-scale studies for 
objective sleep evaluation.
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