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Abstract 

Background  Evidence linking air pollution to major depressive disorder (MDD) remains sparse and results are hetero-
geneous. In addition, the evidence about the interaction and joint associations of genetic risk and lifestyle with air 
pollution on incident MDD risk remains unclear. We aimed to examine the association of various air pollutants with 
the risk of incident MDD and assessed whether genetic susceptibility and lifestyle influence the associations.

Methods  This population-based prospective cohort study analyzed data collected between March 2006 and Octo-
ber 2010 from 354,897 participants aged 37 to 73 years from the UK Biobank. Annual average concentrations of PM2.5, 
PM10, NO2, and NOx were estimated using a Land Use Regression model. A lifestyle score was determined based on a 
combination of smoking, alcohol drinking, physical activity, television viewing time, sleep duration, and diet. A poly-
genic risk score (PRS) was defined using 17 MDD-associated genetic loci.

Results  During a median follow-up of 9.7 years (3,427,084 person-years), 14,710 incident MDD events were ascer-
tained. PM2.5 (HR: 1.16, 95% CI: 1.07–1.26; per 5 μg/m3) and NOx (HR: 1.02, 95% CI: 1.01–1.05; per 20 μg/m3) were 
associated with increased risk of MDD. There was a significant interaction between the genetic susceptibility and 
air pollution for MDD (P-interaction < 0.05). Compared with participants with low genetic risk and low air pollution, 
those with high genetic risk and high PM2.5 exposure had the highest risk of incident MDD (PM2.5: HR: 1.34, 95% CI: 
1.23–1.46). We also observed an interaction between PM2.5 exposure and unhealthy lifestyle (P-interaction < 0.05). 
Participants with the least healthy lifestyle and high air pollution exposures had the highest MDD risk when compared 
to those with the most healthy lifestyle and low air pollution (PM2.5: HR: 2.22, 95% CI: 1.92–2.58; PM10: HR: 2.09, 95% CI: 
1.78–2.45; NO2: HR: 2.11, 95% CI: 1.82–2.46; NOx: HR: 2.28, 95% CI: 1.97–2.64).

Conclusions  Long-term exposure to air pollution is associated with MDD risk. Identifying individuals with high 
genetic risk and developing healthy lifestyle for reducing the harm of air pollution to public mental health.
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Background
Major depressive disorder (MDD) is among the most 
common mental illnesses, and it severely limits psycho-
social functioning and negatively affects the quality of life 
[1]. MDD affects approximately 6% of the adult popula-
tion worldwide each year [2], and patients with MDD 
are nearly 20-fold more likely to die by suicide than indi-
viduals without MDD [3]. According to the World Health 
Organization, MDD will be the leading disease burden 
worldwide by 2030 [4].

Evidence indicates that socioeconomic status, medi-
cal conditions, and family history play a major role in the 
development of mental health disorders and that envi-
ronmental factors may also influence the development of 
such disorders through neuroinflammatory pathways and 
oxidative stress [5, 6]. Although air pollution is the most 
common environmental risk to human health, results 
on the correlation between air pollution and health are 
sparse and inconsistent. For example, a recent systematic 
review reported that long-term exposure to air pollution 
was associated with an increased risk of depression, but 
the association was not significant in more than half of 
the studies included in the review [7]. Furthermore, the 
size and quality of these studies varied considerably. 
Therefore, additional large population-based cohort stud-
ies are necessary to test the potential association between 
long-term exposure to air pollution and MDD.

Evidence suggests that genetic factors play a criti-
cal role in the development of MDD [8, 9]. A genome-
wide association study (GWAS) identified some genetic 
variants associated with MDD risk [10]. Analyzing the 
cumulative genetic burden of these genetic variants by 
using polygenic risk scores (PRSs) could provide quan-
titative measures of genetic susceptibility and could help 
effectively identify individuals at high risk of MDD [11]. 
Recent studies have suggested that genetic susceptibil-
ity may influence the environment–disease relationship 
[12, 13]. However, the influence of genetic susceptibil-
ity on the association between exposure to air pollution 
and MDD risk is unclear. In addition, unhealthy lifestyle 
behaviors, such as smoking, excessive alcohol intake, and 
lack of physical activity, increase the risk of MDD [14–
16]. Several studies have revealed that healthy lifestyle 
habits played a pivotal role in attenuating the effect of air 
pollution on the risk of various diseases [17–19]. How-
ever, whether a healthy lifestyle can mitigate the effect of 
air pollution on MDD risk is unclear.

To address the aforementioned questions, this study 
investigated the association between exposure to air pol-
lution and the incidence of MDD in a large population-
based cohort (UK Biobank). In addition, we examined the 
potential modifying effect of genetic susceptibility and 
lifestyle on this association.

Methods
Study population
In this prospective cohort study, we sourced data from 
the UK Biobank. Details of the design and survey meth-
ods of the UK Biobank have been described elsewhere 
[20]. Briefly, the baseline survey was done between March 
13, 2006, and October 1, 2010, at 22 assessment cent-
ers in urban areas of England, Wales, and Scotland [20]. 
More than 0.5 million participants provided demograph-
ics, socioeconomics, lifestyle, and health information 
through touchscreen questionnaires and anthropometric 
measurements [21].

In the present study, we excluded participants who had 
experienced a MDD at baseline (N = 31,325) and those 
with MDD identified by medical records at baseline from 
the current study (N = 9278). Then, we excluded par-
ticipants with missing information on genetic data (N = 
72,717) and air pollution (N = 34,263). Finally, data from 
354,897 individuals were available for the final analy-
ses (Additional file 1: Fig. S1). All participants provided 
informed consent to participate.

The authors assert that all procedures contributing to 
this work comply with the ethical standards of the rel-
evant national and institutional committees on human 
experimentation and with the Helsinki Declaration of 
1975, as revised in 2008. All procedures involving human 
subjects/patients were approved by the North West 
Multi-centre Research Ethics Committee (REC reference: 
16/NW/0274).

Air pollutants
Estimates of particulate matter with aerodynamic diam-
eter ≤ 2.5μm (PM2.5), particulate matter with aerody-
namic diameter ≤ 10μm (PM10), nitrogen dioxide (NO2), 
and nitrogen oxides (NOx) concentrations were available 
for the year 2010. Land Use Regression (LUR) techniques 
were employed to model the annual average concentra-
tions of these air pollutants by using the predictor vari-
ables obtained from the Geographic Information System 
such as traffic, land use, and topography [22, 23]. Air pol-
lution exposures for all participants in the UK Biobank 
were linked to the records through geocoded residen-
tial addresses given at the baseline visit. LUR techniques 
were developed by the ESCAPE project, which estimates 
for particulates are valid up to 400 km from the monitor-
ing area and required a spatial resolution of at least 100 
m. More details of the ESCAPE LUR model development 
and validation methodology have been published else-
where. Briefly, leave-one-out cross-validation showed 
good model performance for PM2.5, PM10, NO2, and NOx 
(cross-validation R2=77%, 88%, 87%, and 88%, respec-
tively) [23].
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Polygenic risk score
We used the imputed genetic data from UK Biobank. 
Details of genotyping, imputation, and quality control 
have been described previously [24]. In the present analy-
sis, 17 single-nucleotide polymorphisms (SNPs) were 
selected based on their association with MDD in previ-
ous GWAS to create a weighted PRS for MDD (selected 
SNPs are provided in Additional file  1: Table  S1) [10]. 
Details regarding PRS calculation have been described 
in a previous study [12]. We calculated PRS by summing 
the product of the weighted risk estimate (the SNP’s β 
coefficient from reported MDD GWAS) and the number 
of risk alleles (0, 1, and 2) for each risk variant: PRS = 

M

n=1
βn × SNPn . In the present study, subjects were cat-

egorized as low, intermediate, and high genetic risk based 
on the tertile distribution of PRS.

Lifestyle score
Consistent with the previous study, the lifestyle score 
was constructed based on the following lifestyle vari-
ables: smoking status, alcohol intake, physical activity, 
television viewing time, sleep duration, fruit and veg-
etable intake, oily fish intake, red meat intake, and pro-
cessed meat intake [25]. These factors comprise the score 
derived from touchscreen questionnaire responses at 
baseline (Additional file 1: Table S2). Participants scored 
1 point for each unhealthy category defined on the 
basis of national guidelines (Additional file 1: Table S2). 
Unhealthy lifestyle was assessed as follows: current 
smoker, alcohol consumed daily or almost daily, <150 
min per week of moderate-intensity physical activity or 
<75 min per week of vigorous-intensity physical activ-
ity, ≥4 h per day of television viewing time, <7 h or >9 
h of sleep time per day, <400 g of fruits and vegetables 
per day, <1 portion of oily fish per week, >3 portions of 
red meat per week, and >1 portion of processed meat 
per week. An unweighted score was created by summing 
each component score with a range from 0 to 9, with 
higher scores indicating an unhealthier lifestyle. Then, 
participants were subsequently categorized into three 
categories: most healthy (scored 0, 1, or 2), moderately 
healthy (scored 3, 4, or 5), and least healthy (scored 6, 7, 
8, or 9) [25].

Assessment of MDD
Incident outcomes in the UK Biobank were linked to hos-
pital admissions and death registries. Detailed informa-
tion has been described elsewhere [26]. Incident MDD 
was diagnosed using the International Classification of 
Diseases, Tenth Revision (ICD-10) coding system and the 
ICD-10 codes of the categories of disorders are shown 
in Additional file 1: Table S3. Participants were followed 

from January 1, 2011, to the first diagnosis of incident 
MDD, death, or until January 30, 2021, whichever came 
first (the timeline is shown in Additional file 1: Fig. S2).

In line with previous studies [27], individuals who 
experienced a prevalent MDD at baseline were defined as 
per UK Biobank’s assessment protocol for lifetime expe-
rience of probable MDD. The structured and validated 
diagnostic criteria were used to assess the lifetime history 
of mood disorders in the UK Biobank [28, 29]. To briefly 
summarize, the assessment of MDD comprised a series 
of items from the Patient Health Questionnaire, items 
relating to lifetime experience of minor or major depres-
sion, and items on social support for mental health [28, 
30]. The criteria for participants who had experienced a 
MDD included those who had experienced a single prob-
able lifetime episode of major depression, probable recur-
rent major depression (moderate), or probable recurrent 
major depression (severe), or any combination thereof 
(panel).

Covariates
We developed a directed acyclic graph (DAG) to iden-
tify potential covariates that need to be adjusted in our 
multivariate analyses, using the online DAGitty tool 
(www.​dagit​ty.​net) [31]. Based on the priori knowledge 
and existing literature, we included a rich set of covari-
ates in the DAG that should be considered in the analyses 
[27, 32, 33]. From the DAG (Additional file 1: Fig. S3), a 
minimally sufficient set of variables for adjustment were 
retained: age; gender (female or male); ethnicity (white; 
mixed; Asian; black; Chinese; or other); education level 
(college or university degree; A/AS levels or equiva-
lent; O level/GCSE or equivalent; CSE or equivalent; 
NVQ or HND or HNC or equivalent; other professional 
qualification; or none of the above); employment status 
(employed; retired; or unemployed, home maker, or oth-
ers); household income (less than £31,000 or £31,000 and 
above); and Townsend deprivation index (continuous). 
The proportions of missing data about covariates were 
as follows: 15% for household income, 2% for education 
level and employment status, and less than 1% for ethnic-
ity and Townsend deprivation index. Multiple imputation 
by fully conditional specification (FCS) was performed to 
impute missing covariate data.

Statistical analyses
Continuous and categorical variables were presented as 
mean ± standard deviation (SD) and number (percent-
age), respectively. Cox proportional hazard regression 
models were used to estimate the associations between 
ambient air pollutants, genetic risk, and lifestyle score 
with incident MDD and to calculate the hazard ratio 
(HR) and 95% confidence interval (CI). Schoenfeld 

http://www.dagitty.net
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residuals were used to test the assumptions of propor-
tionality (Additional file  1: Fig. S4-S7). The Cox regres-
sion model was unadjusted in model 1. Model 2 was 
adjusted for age, gender, ethnicity, education, employ-
ment status, household income, and Townsend depri-
vation index. In addition, we then conducted several 
sensitivity analyses to assess the robustness of the find-
ings. First, we excluded participants with MDD that 
occurred during the first 2 years of follow-up to mini-
mize the influence of reverse causation. Second, we 
restricted all analyses among participants who resided 
in their current address for 5 or more years to consider 
the effects of reliable accumulated exposures. Third, to 
avoid misclassification bias and potential confound-
ing, we excluded participants who were diagnosed with 
dementia (ICD-10 codes G30.x, G31.x, and F00.x–F03) 
or anxiety disorders (ICD-10 codes F40.x and F41.x) 
during the follow-up period. Fourth, we repeated the 
analyses by additional adjusting for BMI categories, 
cardiometabolic disease, diabetes, lifestyle, and MDD-
PRS to reduce potential residual confounding. Fifth, 
we restricted the analysis to participants with complete 
covariate data for comparison with the results based on 
multiple imputation. Sixth, we examined the associa-
tion between time-varying exposure to air pollution and 
MDD risk. Exposures to PM2.5, PM10, NO2, and NOx 
during the follow-up were estimated at each participant’s 
residential addresses using data from the UK’s Depart-
ment for Environment, Food and Rural Affairs based on 
a previous study [34]. Finally, to ensure comprehensive 
ascertainment, incident MDD was derived from linkage 
to both hospital inpatient and primary care records. In 
addition, to investigate the effects of pollutant mixtures 
and eliminate the problem of multicollinearity, principal 
component analysis (PCA) was applied [35].

We examined the dose–response association between 
air pollutants and MDD risk using restricted cubic spline 
regressions. We additionally examined the combination 
of air pollutants and genetic categories with incident 
MDD risk (12 categories with lowest genetic risk and 
lowest quartile of air pollution as reference) and the com-
bination of air pollutants and lifestyle with incident MDD 
(12 categories with lowest lifestyle risk and lowest quar-
tile of air pollution as reference). Moreover, the interac-
tions between genetic risk and lifestyle with air pollutants 
were tested by stratifying genetic risk and lifestyle.

All data were analyzed using R (version 4.0.5) and the 
statistical significance was set to P value < 0.05 at two tails.

Results
During a total of 3,427,084 person-years (median fol-
low-up 9.7 years), 14,710 incident MDD events were 
recorded. Table 1 displays the baseline characteristics of 

the study participants. Participants who developed MDD 
were more likely to have the least healthy lifestyle, high 
genetic risk, and higher air pollution exposure. The Pear-
son correlation coefficients and the summary statistics of 
air pollutants are shown in Additional file 1: Fig. S8 and 
Additional file 1: Table S4, respectively.

Table  2 presents the relations of each air pollutant 
with MDD risk. In the finally multivariate-adjusted 
model, PM2.5 (HR: 1.16, 95% CI: 1.07–1.26; per 5 μg/
m3) and NOx (HR: 1.02, 95% CI: 1.01–1.05; per 20 μg/
m3) were significantly associated with MDD. How-
ever, we did not observe an association between PM10 
(HR: 1.00, 95% CI: 0.92–1.09; per 10 μg/m3) and NO2 
(HR: 1.00, 95% CI: 0.98–1.02; per 10 μg/m3) with MDD. 
Moreover, compared with the lowest quartile, the HRs 
(95% CIs) of MDD were 1.12 (1.06, 1.17) and 1.07 (1.02, 
1.13) for subjects with the highest quartile of exposure 
to PM2.5 and NOx, respectively. These results did not 
alter appreciably in the sensitivity analyses (Additional 
file  1: Table  S5-S12). We then examined the association 
between principal components (PCs) and MDD risk 
(Additional file 1: Table S13). We found that the first PC 
(PC1) predominated by PM2.5, NO2, and NOx was asso-
ciated with an increased risk of MDD (HR = 1.02, 95% 
CI: 1.01, 1.04). However, no significant association was 
observed for PC2 which predominated by PM10 (HR 
= 1.00, 95% CI: 0.98, 1.01). We also used the restricted 
cubic spline to assess the potential dose-response rela-
tionship of air pollutants with MDD in Fig.  1. We 
found nonlinear relationships between PM2.5, NO2, and 
NOx with the risk of incident MDD (P-nonlinearity for 
PM2.5: 0.006; NO2: 0.003; NOx: 0.003). Additional file  1: 
Table  S14 shows results about the association between 
air pollution and MDD stratified by age and sex group. 
No significant interaction was found between air pollu-
tion and age on the risk of incident MDD, whereas sig-
nificant interactions were observed between PM2.5 with 
gender on the risk of incident MDD (P-interactions were 
0.049 for PM2.5). The association of air pollution expo-
sure with MDD risk was stronger in men than in women 
(Additional file 1: Table S14).

Additional file 1: Table S15 presents the associations of 
PRS with the risk of MDD. We found a significant asso-
ciation of PRS with MDD in the multivariable-adjusted 
model (HR: 1.10, 95% CI: 1.07–1.12). Figure  2 shows 
the risk of incident MDD for combined air pollut-
ants and genetic risk. Compared with participants with 
low genetic risk and low air pollution exposure, those 
with high genetic risk and high PM2.5 exposures had 
the highest risk of incident MDD (PM2.5: HR: 1.34, 95% 
CI:1.23–1.46). The interaction effects between PRS with 
PM2.5, PM10, and NO2 on the risk of incident MDD were 
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Table 1  Descriptive characteristics of the study participants and stratified by major depressive disorder (MDD) status at follow-up

Variables Total (n=354,897) Individuals without MDD 
(n=340,187)

Individuals with 
MDD (n=14,710)

Age, years (mean ± SD) 56.71 ± 8.07 56.71 ± 8.07 56.87 ± 8.08

Gender, n (%)

  Female 189,358 (53.4) 179,981 (52.9) 9377 (63.7)

  Male 165,539 (46.6) 160,206 (47.1) 5333 (36.3)

Ethnicity, n (%)

  White ethnicity 340,408 (96.3) 326,236 (96.3) 14,172 (96.9)

  Mixed ethnicity 1600 (0.5) 1519 (0.4) 81 (0.6)

  Asian ethnicity 5131 (1.5) 4966 (1.5) 165 (1.1)

  Black ethnicity 3105 (0.9) 3014 (0.9) 91 (0.6)

  Chinese ethnicity 783 (0.2) 775 (0.2) 8 (0.1)

  Other ethnicities 2322 (0.7) 2214 (0.7) 108 (0.7)

  Missing data 1548 (0.4) 1463 (0.4) 85 (0.6)

Education level, n (%)

  College or university degree 111,478 (31.8) 108,187 (32.2) 3291 (22.8)

  A/AS levels or equivalent 39,041 (11.1) 37,616 (11.2) 1425 (9.9)

  O level/GCSE or equivalent 77,115 (22.0) 73,973 (22.0) 3142 (21.8)

  CSE or equivalent 20,170 (5.8) 19,148 (5.7) 1022 (7.1)

  NVQ or HND or HNC or equivalent 23,484 (6.7) 22,381 (6.7) 1103 (7.6)

  Other professional qualifications 18,141 (5.2) 17,385 (5.2) 756 (5.2)

  None of the above 60,991 (17.4) 57,287 (17.1) 3704 (25.6)

  Missing data 4477 (1.3) 4210 (1.2) 267 (1.8)

Employment status, n (%)

  Employed 203,737 (58.0) 197,160 (58.5) 6577 (45.3)

  Retired 120,405 (34.3) 115,095 (34.2) 5310 (36.6)

  Unemployed, home maker, or others 27,126 (7.7) 24,506 (7.3) 2620 (18.1)

  Missing data 3629 (1.0) 3426 (1.0) 203 (1.4)

Household income, n (%)

  Less than £31,000 143,987 (47.7) 136,113 (46.9) 7874 (65.3)

  £31,000 and above 157,996 (52.3) 153,806 (53.1) 4190 (34.7)

  Missing data 52,914 (14.9) 50,268 (14.8) 2646 (18.0)

Townsend deprivation index, (mean ± SD) −1.46 ± 2.98 −1.50 ± 2.96 −0.65 ± 3.35

  Missing data 369 (0.1) 360 (0.11) 9 (0.06)

Healthy lifestyle factors, n (%)

  Smoking 34,974 (9.9) 32,459 (9.6) 2515 (17.2)

  Alcohol intake 74,074 (20.9) 71,391 (21.0) 2683 (18.3)

  Physical activity 55,686 (19.5) 52,823 (19.2) 2863 (26.1)

  TV viewing 102,308 (28.9) 96,759 (28.5) 5549 (37.8)

  Sleep time 93,612 (26.4) 88,292 (26.0) 5320 (36.2)

  Fruit and vegetable intake 63,882 (18.5) 60,721 (18.4) 3161 (22.5)

  Oily fish intake 156,756 (44.2) 149,735 (44.1) 7021 (47.8)

  Red meat intake 174,118 (49.7) 167,380 (49.8) 6738 (46.8)

  Processed meat intake 112,094 (31.6) 107,355 (31.6) 4739 (32.3)

Lifestyle category, n (%)

  More healthy 152,734 (54.7) 147,875 (55.1) 4859 (46.2)

  Moderately healthy 117,865 (42.2) 112,779 (42.0) 5086 (48.3)

  Least healthy 8489 (3.0) 7907 (2.9) 582 (5.5)

Genetic risk category, n (%)

  Low 118,478 (33.4) 113,888 (33.5) 4590 (31.2)

  Intermediate 118,295 (33.3) 113,420 (33.3) 4875 (33.1)
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significant (P-interaction for PM2.5: 0.036; PM10: 0.025; 
NO2: 0.030; NOx: 0.080).

The risks of incident MDD according to lifestyle cat-
egories and lifestyle score are provided in Additional 

file  1: Table  S16-S17. MDD risk increased monotoni-
cally across lifestyle categories and scores. The risk 
of incident MDD was 98% higher among those who 
have the least healthy lifestyle compared with those 

Continues variables are displayed as means ± SD, and categorical variables are displayed as numbers (percentages)

Abbreviations: SD standard deviation, A/AS advanced, CSE Certificate of Secondary Education, GCSE General Certificate of Secondary Education, HNC Higher National 
Certificate, HND Higher National Diploma, NVQ National Vocational Qualification, BMI body mass index, MDD major depressive disorder, PM2.5 fine particulate matter 
with diameter ≤2.5μm, PM10 particulate matter with diameter ≤10μm, NO2 nitrogen dioxide, NOX nitrogen oxides

Table 1  (continued)

Variables Total (n=354,897) Individuals without MDD 
(n=340,187)

Individuals with 
MDD (n=14,710)

  High 118,124 (33.3) 112,879 (33.2) 5245 (35.7)

Air pollution, μg/m3 (mean ± SD)

  PM2.5 9.98 ± 1.06 9.97 ± 1.06 10.13 ± 1.09

  PM10 16.20 ± 1.90 16.20 ± 1.91 16.30 ± 1.88

  NO2 26.41 ± 7.59 26.37 ± 7.58 27.22 ± 7.65

  NOX 43.68 ± 15.55 43.60 ± 15.52 45.53 ± 16.05

Table 2  Association between long-term exposure to air pollutants and major depressive disorder (MDD)

Model 1: Unadjusted

Model 2: Adjusted for age, gender, ethnicity, education level, employment status, household income, and Townsend deprivation index

Abbreviations: MDD major depressive disorder, HR hazards ratio, CI confidence interval, PM2.5 fine particulate matter with diameter ≤2.5μm, PM10 particulate matter 
with diameter ≤10μm, NO2 nitrogen dioxide, NOX nitrogen oxides, Ref reference

P value for trend calculated treating the air pollution concentrations (quartile) as a continuous variable

Air pollution No. MDD cases/person-years MDD HR (95% CI)

Model 1 Model 2

PM2.5, per 5-μg/m3 increase -- 1.92 (1.79, 2.07) 1.16 (1.07, 1.26)

  Q1 3075/880,978 1.00 (Ref.) 1.00 (Ref.)

  Q2 3452/849,441 1.16 (1.11, 1.22) 1.08 (1.03, 1.13)

  Q3 3885/858,381 1.30 (1.24, 1.36) 1.12 (1.06, 1.17)

  Q4 4398/838,285 1.47 (1.40, 1.54) 1.11 (1.06, 1.17)

  P for trend <0.001 <0.001

PM10, per 10-μg/m3 increase -- 1.30 (1.20, 1.41) 1.00 (0.92, 1.09)

  Q1 3420/879,257 1.00 (Ref.) 1.00 (Ref.)

  Q2 3741/868,525 1.11 (1.06, 1.16) 1.03 (0.98, 1.07)

  Q3 3838/838,579 1.18 (1.12, 1.23) 1.05 (1.00, 1.10)

  Q4 3711/840,723 1.14 (1.08, 1.19) 0.98 (0.94, 1.03)

  P for trend <0.001 0.610

NO2, per 10-μg/m3 increase -- 1.15 (1.13, 1.17) 1.00 (0.98, 1.02)

  Q1 3365/914,056 1.00 (Ref.) 1.00 (Ref.)

  Q2 3688/879,294 1.14 (1.09, 1.19) 1.02 (0.98, 1.07)

  Q3 3739/828,930 1.23 (1.17, 1.28) 1.02 (0.98, 1.07)

  Q4 3918/804,805 1.32 (1.26, 1.39) 0.99 (0.94, 1.04)

  P for trend <0.001 0.695

NOX, per 20-μg/m3 increase -- 1.15 (1.13, 1.17) 1.02 (1.01, 1.05)

  Q1 3254/911,938 1.00 (Ref.) 1.00 (Ref.)

  Q2 3620/970,880 1.17 (1.11, 1.22) 1.06 (1.01, 1.12)

  Q3 3634/819,160 1.24 (1.19, 1.30) 1.05 (1.00, 1.11)

  Q4 4202/825,106 1.43 (1.36, 1.50) 1.07 (1.02, 1.13)

  P for trend <0.001 0.017
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who have the most healthy lifestyle (HR: 1.98, 95% CI: 
1.81–2.16). Figure  3 shows the risk of incident MDD 
for combined air pollutants and lifestyle. The highest 
MDD risk was observed in participants with the least 
healthy lifestyle and high PM2.5, PM10, NO2, and NOx 
exposures (PM2.5: HR: 2.22, 95% CI:1.92–2.58; PM10: 
HR: 2.09, 95% CI:1.78–2.45; NO2: HR: 2.11, 95% CI: 

1.82–2.46; NOx: HR: 2.28, 95% CI: 1.97–2.64). The 
interaction effects between lifestyle with PM2.5 in rela-
tion to incident MDD risk were significant (P-interac-
tion for PM2.5: 0.026; PM10: 0.054; NO2: 0.410; NOx: 
0.271). The potential effect modifications of individual 
lifestyle factors on MDD risk are presented in Addi-
tional file  1: Table  S18. We observed a significant 

Fig. 1  Dose–response relationship of long-term exposure to air pollution and incident major depressive disorder (MDD). Multiple-adjusted hazard 
ratio (HR) for continuous air pollution is modeled using restricted cubic splines. Models are adjusted for age, gender, ethnicity, education level, 
employment status, household income, and Townsend deprivation index. The reference group is considered the minimum exposure level of air 
pollution in the entire population. Gray bars represent the distribution of the exposure levels in the entire population. The blue solid line indicates 
HR and the shaded area indicates a 95% confidence interval
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Fig. 2  Joint associations of genetic risk score with incident major depressive disorder (MDD). Hazard ratios were adjusted for age, gender, ethnicity, 
education level, employment status, household income, and Townsend deprivation index. The interaction between genetic risk with air pollutants 
was tested by stratifying genetic risk
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Fig. 3  Joint associations of healthy lifestyle score with incident major depressive disorder (MDD). Hazard ratios were adjusted for age, gender, 
ethnicity, education level, employment status, household income, and Townsend deprivation index. The interaction between lifestyle with air 
pollutants was tested by stratifying lifestyle categories
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interaction between PM2.5 and processed meat intake 
to MDD risk (P-interaction = 0.022).

Discussion
In this large-scaled population-based longitudinal study, 
we found that long-term exposures to PM2.5 and NOx 
were significantly associated with the incident MDD risk. 
The risk of incident MDD was higher among those with 
high genetic risk or unhealthy lifestyle compared with 
those with low genetic risk or healthy lifestyle. We also 
found significant interactions of genetic susceptibility 
and lifestyles with exposure to air pollution. Increased 
genetic susceptibility and unhealthy lifestyles may inten-
sify the impact of long-term exposure to air pollution on 
the risk of MDD.

Research on the role of air pollution exposure in the 
development of MDD is limited. We comprehensively 
examined the association between long-term exposure 
to various air pollutants and the risk of incident MDD. 
We used air pollution data from 2010 to capture long-
term air pollution exposure, consistent with previous 
research [12, 36–38]. Air pollution levels in England 
have been relatively stable over these years [39, 40]. As 
the fluctuation of the temporal trend of most air pollu-
tion was generally stable during the study period, the 
average values of air pollution could be used as a surro-
gate measure of long-term exposure [41]. The use of the 
average air pollution levels as the mean estimates in our 
sensitivity analysis further demonstrated the robustness 
of this approach. Our findings are consistent with those 
of previous studies. For example, in a prospective study 
of 27,270 participants in Korea, the researchers observed 
a 44% increase in the risk of MDD for each 10-μg/m3 
increase in PM2.5 levels [42]. Similarly, a nationwide pro-
spective cohort study in the USA found an association 
between exposure to PM2.5 and the onset of depression 
[32]. Meanwhile, there are some other studies that are 
not consistent with our findings. For example, Zhang 
et  al. discovered that long-term exposure to outdoor 
PM10 was associated with the development of depres-
sion; nevertheless, they did not find this association for 
PM2.5 [43]. Notably, previous studies lacked large-scale 
cohort settings and primarily examined particulate mat-
ter exposure (e.g., PM2.5), excluding other gaseous pol-
lutants (e.g., NOx), which led to inconsistent results 
regarding the role of long-term exposure to air pollu-
tion in the development of MDD. Our study provides 
new evidence for epidemiological studies on the associa-
tion between air pollutants and MDD. Our findings may 
have implications for policy regulation and clinical trials 
because changes in policies and individual behavior may 
help reduce air pollution and thus help mitigate symp-
toms of MDD.

There are some underlying mechanisms that could shed 
light on the associations of air pollution with MDD. One 
of the underlying mechanisms is that oxidative stress and 
neuroinflammation pathways induced by air pollutants 
could stimulate the onset and progression of MDD [44]. 
Air pollutants can penetrate the lung tissue compart-
ments, enter the circulatory system, and reach the brain, 
causing oxidative stress and inflammation of the central 
nervous system [45]. In addition, experimental and ani-
mal studies have observed that inhalation of particulate 
matter could stimulate increased expression of redox/glu-
cocorticoid-sensitive genes in rats, suggesting the involve-
ment of the hormonal pathway in mental health disorders 
associated with particulate matter [46]. However, deter-
mining which pathway offers the most critical link is dif-
ficult because of the existing scarcity of particle-specific 
translocation kinetics and exposure levels [47]. In addi-
tion, vascular disease is an essential intermediate factor 
in the association between air pollution exposure and an 
increased risk of subsequent MDD. Increasing bodies of 
evidence demonstrate that exposure to air pollution leads 
to cerebrovascular disease, which may affect the central 
nervous system and the brain, contributing to an increased 
risk of depression and other related conditions [48]. Pre-
vious studies have also indicated that vascular disease is 
associated with inflammatory pathway activation, leading 
to MDD or dysthymia [49]. Additional studies are neces-
sary to determine the precise mechanisms underlying the 
air pollution–induced pathogenesis of MDD.

Previous research demonstrated that the etiology of 
MDD is multifactorial and that its heritability is approxi-
mately 35% [9]. Research also demonstrated that PRS 
may serve as an early indicator of clinically significant 
levels of depression and be associated with the risk of 
depression [50]. Our results are consistent with these 
findings. Additionally, we investigated the contribu-
tion of genetic susceptibility to the association between 
air pollution and MDD and found that air pollution 
may increase the risk of MDD, particularly among indi-
viduals with high genetic susceptibility. Li et al. explored 
how PM2.5 exposure interacts with polygenic risk in the 
development of MDD across multiple levels of brain 
network function [51]. They observed that a combina-
tion of exposure to high levels of air pollution and a 
relatively high polygenic risk for MDD disproportion-
ately augmented stress-related effects on the brain cir-
cuitry. Working memory and stress-related information 
transfer across cortical and subcortical brain networks 
were influenced by PM2.5 exposures to differing extents 
depending on the polygenic risk for MDD in gene-by-
environment interactions [51]. However, other explana-
tions for these mechanisms can be applied when they are 
separated into particular variants. Previous studies have 
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revealed that patients with psychiatric disorders had a 
higher mRNA expression level of vaccinia-related kinase 
2 (VRK2) than did healthy individuals [52, 53]. In addi-
tion, a randomized crossover study suggested that higher 
PM2.5 exposure was positively associated with the mRNA 
expression of cytokine [54]. Therefore, air pollution may 
interact with rs1518395 located in VRK2 to jointly affect 
the onset of MDD. In addition, some SNPs from an MDD 
GWAS, such as rs10514299, could be enriched in genes 
expressed in the central nervous system and function in 
transcriptional regulation related to neurodevelopment 
[10]. Because of their toxicity to the central nervous sys-
tem, air pollutants may also contribute to the develop-
ment of mental diseases [55]. Therefore, by affecting the 
central nervous system, SNPs and air pollution may con-
tribute to the onset of depression. Accordingly, elucidat-
ing the pathophysiology of MDD is imperative.

In addition, we also confirmed that unhealthy lifestyles 
were associated with higher risks of MDD. Considering 
the complexity of health behaviors and that most health 
behaviors are interconnected, a comprehensive analysis 
of healthy lifestyles may better capture the impact of life-
style than an analysis based on a single factor. Our find-
ings are in concert with the previous studies. Adjibade 
and colleagues formulated a healthy lifestyle index that 
incorporates multiple lifestyle factors and discovered that 
combined healthy lifestyles were associated with a lower 
risk of depressive symptoms [56]. We also observed that 
the deleterious associations between PM2.5 and MDD were 
stronger among individuals who led unhealthy lifestyles. 
Indeed, besides long-term air pollution exposure may 
reach the brain through the lung–brain axis and induce 
systemic inflammation [57], unhealthy lifestyle factors 
have also been associated with elevated inflammation lev-
els [58, 59]. Conversely, higher levels of systemic inflam-
mation marker may contribute to the development of 
different neuropsychiatric disorders including depression 
[60]. Therefore, when air pollution and unhealthy lifestyle 
are employed together for MDD, it is reasonable to appear 
enhanced effect. These findings emphasize the importance 
of lifestyle changes. The benefit of air pollution exposure 
reduction in lowering the risk of MDD is expected to be 
greatest among individuals with healthy lifestyles; this 
finding can inform the establishment of personalized pre-
ventive strategies for reducing the risk of MDD.

To the best of our knowledge, our study is the first to 
evaluate the modifying effect of genetic susceptibility and 
lifestyles on the association between air pollution expo-
sure and the risk of MDD. The main strengths of our 
study are its inclusion of a large sample size, prospective 
design, and consistent results in several sensitivity analy-
ses. Nevertheless, we also acknowledge several limitations 
of our study. First, an exposure assessment based on a 

single address does not eliminate the possibility of expo-
sure misclassification caused by outside activities. Fur-
ther studies with more accurate estimates are needed to 
confirm the present findings. In addition, we had to admit 
that the effect of the collinearity cannot be ruled out, sin-
gle-pollutant associations may be not independent, and 
the results should be interpreted with caution. Second, 
common to most previous environmental epidemiology 
studies [12, 36–38], we used the annual average air pollu-
tion concentration in 2010 as a proxy for the long-term air 
pollution exposure, which might induce the exposure mis-
classification. However, previous studies have suggested 
that the fluctuation of the temporal trend of most air pol-
lution was generally stable during the study period in UK 
Biobank [12, 61, 62]. Furthermore, of note, similar results 
were found when a time-varying air pollution exposure 
was used in the sensitivity analysis, supporting the validity 
of using the baseline concentration. In addition, the UK 
Biobank lacks data on air pollution composition; there-
fore, there is still uncertainty as to which components 
are the most harmful. Third, incident MDD cases are not 
always well captured through hospital inpatient records 
and death registries. Although diagnosis by a doctor is a 
more common and precise way, some mildly depressed 
people may do not go to the hospital, resulting in MDD 
cases that were likely to be underreported. Fourth, a sam-
ple of 500,000 was recruited in UK Biobank with remark-
able speed and efficiency, but this efficiency was achieved 
at the expense of a response rate (5.5%) and was subject 
to selection bias. Nevertheless, the absolute difference in 
these estimates was low and lead to the practical impor-
tance of such risk underestimation is likely to be small 
[63]. Fifth, additional MDD-related variants may be iden-
tified in future GWAS, the inclusion of additional SNPs in 
further study may help to further refine the estimation of 
genetic risk. Sixth, although we have adjusted for a series 
of potential confounders in our analysis, potential resid-
ual confounding from unmeasured or unknown variables 
might still be present. Finally, because the majority of our 
study’s participants were of European descent, the gener-
alization of our findings regarding the associations of air 
pollution exposure and genetic susceptibility with MDD 
to other populations should be interpreted with caution.

Conclusions
In summary, based on this large prospective cohort 
study, we found that long-term exposure to ambient 
air pollution was associated with a higher risk of MDD. 
High genetic risk and unhealthy lifestyle may intensify 
the impact of air pollution on MDD risk, highlighting 
the importance of identifying individuals with high 
genetic risk and developing healthy lifestyles for reduc-
ing the harm of air pollution to public mental health.
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