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Abstract 

Background  After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the 
response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcrip‑
tional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression 
after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are 
involved in acute brain injury and may assist with time-targeted, cell-specific therapy.

Methods  The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic 
stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential 
expression analyses were performed at 0–24 h, 24–48 h, and >48 h following stroke.

Results  Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, 
and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. 
Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregu‑
lated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identi‑
fied gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. 
Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied 
with time after stroke and included hub genes of immunoglobulin genes in whole blood.

Conclusions  Altogether, the identified genes and pathways are critical for understanding how the immune and 
clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and 
treatment targets.
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Background
Ischemic stroke (IS) is one of the leading causes of death 
and disability in the world. Brain injury follows arte-
rial occlusions in large or small cerebral vessels. These 
may arise due to several different causes that ultimately 
deprive the tissue of necessary oxygen and glucose [1]. 
Effective treatments are limited to short time windows 
and access to stroke centers. Early diagnosis is paramount 
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for best outcomes. Current differential diagnosis usually 
requires advanced brain imaging. Therefore, there is a 
need for tests that utilize reliable and accurate molecular 
biomarkers from blood.

The immune and clotting systems play critical roles in 
the injury and recovery from stroke. After IS, peripheral 
leukocytes, including monocytes and neutrophils, infil-
trate the injured area, mediating the immune response 
that causes inflammation and subsequent resolution 
and repair [2, 3]. Monocytes are composed of different 
subsets: classical (pro-inflammatory CD14++ CD16−), 
intermediate (CD14++ CD16+), and non-classical (anti-
inflammatory CD14+ CD16++) [4]. In addition, mono-
cytes and neutrophils undergo polarization after IS: 
activated M1 monocytes or monocyte-derived mac-
rophages and N1 neutrophils that are related to the 
inflammatory response can polarize to M2 or N2 pheno-
types that are associated with the resolution and regen-
erative phase [5–8].

In models of experimental IS, neutrophils increase in 
the brain after 3 h and reach peak levels in the first 24 h 
[9, 10]. Monocytes slowly infiltrate the injury, peaking at 
day 3 or later after experimental stroke [2, 11]. Neutro-
phil levels in the brain return to near normal by a week 
after stroke, while monocyte increases persist for over 
a month [2, 9]. The prolonged monocyte/macrophage 
presence is likely indicative of ongoing peripheral leuko-
cyte interaction with the injured brain associated with 
recovery phases. Analyzing peripheral leukocytes after 
stroke represents a feasible proxy to study the cellular and 
pathological changes that occur in response to the brain 
parenchyma injury. An increase of circulating neutro-
phils occurs promptly after stroke, and altered ratios of 
peripheral leukocytes (including neutrophils and mono-
cytes) are indicators of outcome [12–17]. Successful 
intervention strategies in the acute and subacute phases 
of stroke may be improved when the pathological role of 
specific leukocyte types at different times is considered.

Transcriptional changes are detected promptly after 
IS in peripheral blood cells, showing how dynamic 
changes in gene expression can be revealed even in the 
acute phase of stroke. This results in distinct signatures 
depending on the cell type and stroke etiology [18–22]. 
Peripheral monocytes and neutrophils have been shown 
to be major cell types that display a transcriptomic 
response within the first 24 h after stroke [23]. In this 
study, the transcriptomic profiles from peripheral mono-
cytes and neutrophils and whole blood were analyzed as 
a function of time and of different etiologies. Different 
analytical approaches (differential expression, self-organ-
izing maps, and Weighted Gene Co-expression Network 
Analysis (WGCNA [24])) enabled the identification of 
genes that change expression following acute stroke. 

Though changes of gene expression in whole blood have 
been described within 0 to 24 h following ischemic stroke 
using microarrays [23, 25], this is the first study to ana-
lyze the transcriptional profiles of monocytes, neutro-
phils, and whole blood with RNA-seq at times ranging 
from 0 to >48 h. The focus on the response over time in 
different cell types is crucial for the eventual develop-
ment of diagnostic biomarkers and cell- and time-tai-
lored treatments.

Methods
Subjects
Thirty-eight ischemic stroke (IS) patients and 18 vascular 
risk factor control (VRFC) subjects were recruited at the 
University of California at Davis Medical Center under 
a study protocol reviewed and approved by the Insti-
tutional Review Board (IRB ID 248994-41). The study 
adheres to federal and state regulations for protection of 
human research subjects, The Common Rule, Belmont 
Report, and Institutional policies and procedures. Writ-
ten informed consent was obtained from all participants 
or a legally authorized representative.

The criteria for recruitment are detailed in our pre-
vious study [18]. Briefly, IS diagnoses (cardioembolic 
(CE), large vessel (LV), and small vessel/ lacunar (SV)) 
were confirmed by two independent neurologists based 
on history, exam, brain CT or MRI, and other test-
ing. The exclusion criteria were as follows: anticoagula-
tion therapy (using coumadin, heparin, or any NOACs), 
immunosuppressive therapy, current or recent (2 weeks) 
infection, and hematological malignancies. Vascular risk 
factor control (VRFC) subjects had no history of stroke, 
myocardial infarction, or peripheral vascular disease, 
and they were recruited based on the presence of vascu-
lar risk factors including hypertension, hypercholester-
olemia, and/or type 2 diabetes.

Whole blood for RNA analysis was drawn directly into 
PAXgene RNA stabilizing tubes for subsequent batch 
isolation. Blood for immune cell populations was col-
lected in citrate tubes for immunomagnetic isolation by 
RoboSep (StemCell Technologies, Inc.). Cell isolation 
was performed as described in Carmona-Mora et al. [18]. 
Monocytes were positively selected using antibodies to 
CD14 to a purity of >93%, and neutrophils were enriched 
by negative selection to a purity of >99% as previously 
validated by flow cytometry.

RNA sequencing and differential gene expression analyses
RNA isolation and cDNA library preparation were per-
formed as previously described [18]. In summary, total 
RNA was extracted from isolated monocytes and neu-
trophils using the Zymo Direct-zol RNA mini-prep 
kit (Zymo Research) according to the manufacturer’s 
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protocol. This was followed by treatment with DNase 
(QIAgen). Total RNA from whole blood samples was 
extracted using QIAcube with PAXgene Blood miRNA 
Kit (QIAgen). Ribosomal RNA and globin transcripts 
were depleted using InDA-C (aka AnyDeplete) during 
library preparation by the NuGEN Ovation Universal 
RNA-Seq system (Tecan Genomics, Inc.). RNA sequenc-
ing yielded an average of 200 M ± 10 M 2×150 bp reads 
per sample. Raw data were processed to generate counts 
as previously described [18]. Briefly, raw reads were pro-
cessed using expHTS [26] to trim low-quality sequences, 
for adapter contamination, and to remove PCR dupli-
cates. Trimmed reads were aligned to the human 
GRCh38 primary assembly genome (GENCODE v25 
annotation (http://​www.​genco​degen​es.​org/), using STAR 
v. 2.5.2b aligner [27]. Raw counts by-gene were generated 
using featureCounts of the Subread software v.1.6.0 [28], 

and normalized (transcripts per million, TPM) on Partek 
Flow software (Partek Inc.). Partek Genomics Suite was 
used for differential expression with an analysis of covari-
ance (ANCOVA) model with REML variance estimate 
using the model: Y ijklmn = μ + Diabetes i + Diagnosis j + 
Hypercholesterolemia k + Hypertension l + Time (h) + 
Diagnosis*Time Point (TP) jm+ ε ijklmn, where Y ijklmn rep-
resents the nth observation on the ith Diabetes, jth Diag-
nosis, kth Hypercholesterolemia, lth Hypertension, mth 
Time Point (TP), μ is the common effect for the whole 
experiment, and ε ijklmn represents the random error 
component [29].

To identify differentially expressed genes, subjects were 
split into time points (TPs) from stroke onset (TP1= 
0–24 h; TP2= 24–48 h; and TP3 = > 48 h; mean and SD 
for time (h) in every time point are available in Table 1). 
Vascular risk factor control (VRFC) subjects were 

Table 1  Subject demographics and relevant clinical characteristics in each of the time windows analyzed

a Significant difference vs. VRFC (p-value < 0.05, Fisher’s exact probability test—categorical variables, Student’s t test—continuous variables) NIHSS scale range is from 
0 to 43. Less than half of VRFC had NIHSS assessed. For the rest of time points 80–100% of patients had NIHSS data

IS

VRFC 0–24 h (TP1) 24–48 h (TP2) >48 h (TP3)

Monocytes Subjects 12 17 13 5

Age, years (mean ±SD) 62.08±6.70 68.41±11.88 61.46±12.51 66.60±8.04

Time since event, h (mean ±SD) nil 15.67±5.26 32.37±8.51 56.02±9.80

NIHSS at admission (mean ±SD) 0±0 4.94±5.40 2.92±4.51 3±2.16a

NIHSS at blood draw (mean ±SD) 1.6±3.57 3±4.27 1.76±4.08 1.75±0.95

Sex (male; female) (n) 6; 6 10; 7 8; 5 0; 5

Diabetes (n) 6 3 2 1

Hyperlipidemia (n) 10 6a 7 3

Hypertension (n) 6 13 10 5

Neutrophils Subjects 12 16 12 5

Age, years (mean ±SD) 64.66±11.34 68.5±12.26 61.50±13.06 66.60±8.04

Time since event, h (mean ±SD) nil 16.25±4.84 31.21±7.74 56.02±9.80

NIHSS at admission (mean ±SD) 0±0 4.62±5.41 3.08±4.67 3±2.16

NIHSS at blood draw (mean ±SD) 2.25±3.86 3.18±4.33 1.83±4.26 1.75±0.95

Sex (male; female) (n) 6; 6 9; 7 7; 5 0; 5

Diabetes (n) 6 3 1 1

Hyperlipidemia (n) 10 6a 6 3

Hypertension (n) 9 13 9 5

Whole blood Subjects 18 18 13 6

Age, years (mean ±SD) 64.83±9.401 68.88±11.70 63.15±11.23 65.66±7.55

Time since event, h (mean ±SD) nil 15.53±5.14 32.41±8.47 62.00±17.07

NIHSS at admission (mean ±SD) 0±0 4.72±5.32 2.92±4.51 3.20±1.92

NIHSS at blood draw (mean ±SD) 1.8±3.49 3±4.27 1.92±4.05 1.8±0.83

Sex (male; female) (n) 10; 8 11; 7 7; 6 0; 6a

Diabetes (n) 7 4 3 1

Hyperlipidemia (n) 14 7a 6 4

Hypertension (n) 11 14 10 6

http://www.gencodegenes.org/
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assigned time point zero (TP0). Contrasts included time 
after stroke, interaction of diagnosis x TP, and major risk 
factor categories (diabetes, hypercholesterolemia, and 
hypertension) with cutoffs for significance set to p < 0.02 
and fold-change > |1.2| to create lists of genes. Fisher’s 
least significant difference (LSD) was used for individual 
contrasts [30].

Gene clustering
Gene Expression Dynamics Inspector (GEDI) v2.1 [31] 
was used to create mosaic grids (tiles) of self-organizing 
maps for visualization of differentially expressed genes 
over time (https://​github.​com/​midas-​wyss/​gedi). Two 
phases of training iteration were used (40 and 100) with 
linear initialization. Grid sizes were chosen depending 
on the total number of differentially expressed genes 
to analyze per sample type to keep a similar number 
of genes per tile in all mosaics (5×7, 7×8, and 4×6, 
for monocytes, neutrophils, and whole blood samples 
respectively). Tiles corresponding to gene clusters of like-
behaving genes were formed based on Pearson’s correla-
tion. Tiles are composed of the same genes across time 
points, and mosaics for monocytes, neutrophils, and 
whole blood have different tile composition.

Self-organizing maps (SOM) [32] were implemented in 
Partek Genomics Suite (alpha value set to 0.1, with ran-
dom initialization, exponential decay function, Gaussian 
neighborhood, and rectangular topology). This was done 
to examine trajectories of gene expression over time. The 
input for SOM consisted of differentially expressed genes 
that are present in at least two of the studied time points. 
In total, 500,000 training iterations were performed. 
Map height and width were set to 4×4 (16 profiles) in 
monocytes, neutrophils, and whole blood in the analy-
ses irrespective of IS cause. For SOM in DEGs analyzed 
per IS etiology, map height and width were set as follows: 
2×2 (CE), 2×3 (LV), and 2×2 (SV) in monocytes; 2×2 
(CE), 3×3 (LV), and 2×3 (SV) in neutrophils; 2×3 (CE), 
2×2 (LV), and 2×2 (SV) in whole blood. Differentially 
expressed gene expression was standardized by shifting 
to a mean of 0 (standard deviation (SD) of 1). Profiles 
were summarized and represented with ± 1SD. Profiles 
with similar dynamics were merged (based on similar 
directionality in every time point) for gene ontology anal-
yses and visualization.

Cell‑specific markers
The presence or enrichment (p-value < 0.05 for significant 
enrichment) of gene lists with blood cell type-specific 
genes was assessed by comparing to previously described 
blood cell type-specific genes [33, 34]. Enrichment analy-
ses were performed using hypergeometric probability 
testing (R function phyper).

Pathway and gene ontology analyses
Pathway enrichment analyses were performed using 
Ingenuity Pathway Analysis (IPA, Ingenuity Systems®, 
QIAgen). For input, differentially expressed genes and 
their fold-changes from every time point and sample 
type, with a p < 0.05 and fold-change > |1.2|, were used. 
Pathways and predicted upstream regulators (Ingenuity 
Upstream Regulator analysis in IPA, white paper, Inge-
nuity Systems®, QIAgen) with Fisher’s exact test p < 0.05 
were considered statistically over-represented, and those 
that also have a Benjamini–Hochberg False Discov-
ery Rate (FDR) correction for multiple comparisons are 
indicated in the figures. IPA also computes significant 
pathway activation or suppression (z ≥ 2.0 and z ≤ −2.0, 
respectively), by using the z-score—which is based on 
comparisons between input data and pathway patterns, 
causal relationships, and curated literature. Gene ontol-
ogy (GO) enrichment was explored as implemented in 
Partek Genomics Suite in the Gene Set Analysis, using 
Fisher’s exact test and FDR correction for multiple com-
parisons, with significance set at p<0.05.

Weighted gene co‑expression network construction 
and analysis
Separate weighted gene co-expression networks were 
generated for isolated monocyte (MON network) and 
neutrophil (NEU network) data, as well as for whole 
blood (WB network). VRFC samples were excluded, and 
genes below a minimum of 40 counts in every sample 
were filtered out for MON and NEU, and below a total 
of 80 counts for WB. The MON network was generated 
using the 14,955 detected genes after filtering across 35 
IS samples; the NEU network was generated using 13,921 
genes across 31 IS samples; the WB network was gener-
ated using 15,360 genes across 37 IS samples. Data were 
imported into R and checked for missing or zero-vari-
ance counts using the function goodSamplesGenes.

Networks were generated with the Weighted Gene Co-
Expression Network Analysis (WGCNA) package using 
a Pearson correlation to measure co-expression [24]. 
An approximate scale-free topology was depicted by the 
data. Soft thresholding powers (β) of 14, 8, and 16 were 
selected for the MON, NEU, and WB networks, respec-
tively, to maximize strong correlations between genes 
while minimizing weak correlations [35]. A signed net-
work was used to consider both positive and negative 
correlations [36]. The cutreeDynamic function (method 
= tree; deepsplit = 1; minimum module size = 50) was 
used to form modules due to its adaptability to complex 
dendrograms and ability to identify nested modules [36]. 
Hub genes were defined as the top 5% by interconnectiv-
ity and may represent genes with important regulatory or 
molecular signaling roles [37, 38].

https://github.com/midas-wyss/gedi
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Module association with clinical parameters
Module-parameter associations were determined using 
Kruskal-Wallis and Spearman Ranked Correlation tests 
in Partek Genomics Suite for categorical and continuous 
variables, respectively. Ranked statistical tests were uti-
lized to minimize the impact of outliers. Parameters were 
associated with the module eigengene, or first principal 
component of expression of genes within a module. Con-
tinuous time since event and all clinical parameters (age, 
diabetes, hypercholesterolemia, hypertension, race, and 
sex) were examined on the complete datasets. A p-value 
< 0.05 was considered significant.

Hub gene analyses
Functional modules were detected with HumanBase [39] 
in a tissue-specific manner, using all hub genes per sam-
ple type as input (monocytes and whole blood). Briefly, 
this tool is based on shared k-nearest-neighbors and the 
Louvain community-finding algorithm. Gene ontology 
terms in the results are considered significant based on 
a corrected P-value < 0.05 (one-sided Fisher’s exact tests 
with a Benjamini–Hochberg FDR correction for multiple 
comparison).

Results
Cohort demographics
Individuals were binned into time points (TPs) from 
stroke onset (TP1= 0–24 h, average ~15 h; TP2= 24–48 
h, average ~32 h; and TP3= >48 h, average ~56 h), and 
vascular risk factor controls (VRFC) were assigned TP0 
(Table 1). The cohort demographics and clinical charac-
teristics per time point are presented in Table 1, as well 
as the total number of subjects per subgroup. The statis-
tical analysis of variables showed that age, diabetes, and 
hypertension were not significantly different (p < 0.05) 
between TPs and controls in any of the sample types 
(monocytes, neutrophils, or whole blood). NIHSS at 
admission was significantly higher in subjects for samples 
at TP3 when comparing to VRFC in monocytes. Hyper-
lipidemia was significantly different for TP1 in all sample 
types when comparing to VRFC, while sex is significantly 
different in whole blood at TP3. In this cohort, 5 out of 
38 IS patients received thrombolytic therapy (recombi-
nant tissue plasminogen activator, rtPA) within 4.5h of 
their stroke. None of the IS cases developed hemorrhagic 
transformation.

Gene expression dynamics in the acute and subacute 
post‑stroke phase
The dynamic changes in differential gene expression 
across different time windows were assessed in mono-
cytes (M, Additional file  1: Tables S1A-C), neutrophils 
(N, Additional file  1: Tables S1 D-F), and whole blood 

(WB, Additional file 1: Tables S1G-I) using a significance 
cutoff P<0.02 (Fig. 1). In monocytes, there were 290, 645, 
and 352 DEGs at 0–24 h (TP1), 24–48 h (TP2), and >48 
h (TP3) compared to controls, respectively (Fig.  1). In 
neutrophils, 508 (TP1), 745 (TP2), and 547 (TP3) genes 
were differentially expressed compared to controls. A 
total of 610 (TP1), 260 (TP2), and 227 (TP3) DEGs were 
identified in whole blood compared to controls (Fig.  1 
and Additional file 1: Table S1). Across the time points, 
the number of up- or downregulated DEGs in each sam-
ple type showed distinct and dynamic trends. For exam-
ple, in monocytes, most DEGs are downregulated, with 
the most at TP2 (Fig.  1A, right panel). Conversely, in 
neutrophils most genes are upregulated, peaking at TP2 
(Fig. 1B, right panel). In whole blood, the highest upregu-
lation occurs within the first 24 h (Fig. 1C, right panel). 
Biotypes of DEGs were relatively similar in monocytes 
and neutrophils, while in whole blood more lncRNAs 
and T-cell receptor genes were detected at >48 h post-
stroke (Additional file 2: Fig. S1).

Pathway enrichment analyses also show distinctive 
shifts in molecular function and cellular roles of the 
DEGs over time per sample type. Most of the over-repre-
sented pathways in monocytes are shared across at least 
two TPs (Fig.  2A) (average of 88.8% shared pathways) 
and most of these pathways are predicted to be signifi-
cantly suppressed (Z ≤ −2.0), including chemokine, IL-8 
signaling, and production of NO and ROS in monocytes/
macrophages (Additional file 1: Tables S2A-C and Addi-
tional file  2: Fig. S2B and 2C). The only enriched path-
ways with predicted activation are PTEN signaling (at 
24–48 h and >48 h) and RhoGDI signaling (at 24–48 
h) (Additional file  1: Tables S2B-C). Calcium signaling, 
CCR3, chemokine, CREB, and CXCR4 signaling were the 
top enriched pathways in monocytes at 0–24h (Fig. 2C). 
Actin, B cell receptor, ephrin, Erb, and ERK/MAK signal-
ing were the top pathways over-represented in monocytes 
at 24–48 h (Fig. 2C). Similar pathways were regulated in 
monocytes at times >48 h in addition to estrogen, FLT3, 
GM-CSF, GNRH, and HIF signaling (Fig. 2C).

From the pathways exclusively regulated at a single TP, 
suppressed oxidative phosphorylation, suppressed Wnt/
Ca2+, heparan sulfate, and nNOS pathways top the list in 
the first 24 h (Fig. 2D, left panel). Ephrin B, Tec kinase, 
reelin, TGF-β, and IL-6 signaling are amongst the sup-
pressed pathways at TP2 (Fig.  2D, middle panel), while 
tryptophan degradation and IL-15 signaling are sup-
pressed at times over 48h (Fig. 2D, right panel).

In neutrophils, fewer enriched pathways were shared 
across at least two TPs (Fig. 3A, Additional file 1: Tables 
S2D-F) (average of 62.5% of shared pathways in TPs 
pairwise comparison). There were increased numbers of 
pathways at TP2 and TP3 compared to TP1 (Fig. 3A, C). 
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EIF2 signaling and leukocyte extravasation were over-
represented at all TPs (Fig. 3B). CD40 and HIF pathways 
are over-represented at TP2 and TP3. Several interleukin 
pathways are enriched in the later TPs (Fig. 3C and Addi-
tional file  1: Tables S2D-F). IL22 was expressed at TP2 
and TP3 (Fig. 3C). IL-1, 4, 7, and 8 were exclusively over-
represented in TP2, while IL-2, 10, and 15 pathways were 
only enriched after 48 h (Fig. 3D).

In contrast to the isolated cell samples, whole blood 
showed no shared pathways across all TPs (Fig. 4A). Most 
pathways were enriched at only one TP in whole blood 
(Fig. 4C and Additional file 1: Tables S2 G-I), and many of 
these were specific for 0–24 h including p53, AMPK and 
ATM signaling, and FXR/RXR activation (Fig. 4C).

Upstream regulators were computed to identify driv-
ers of gene expression at specific TPs (Additional file 1: 
Table S3). Similar to what was seen with canonical path-
way enrichment, there were more regulators shared 
across TPs for monocytes (Additional file 2: Fig. S2, Addi-
tional file  1: Tables S3A-C) and neutrophils (Additional 

file 2: Fig. S3; Additional file 1: Tables S3 D-F) compared 
to whole blood (Additional file 2: Fig. S4; Additional file 1: 
Tables S3 G-I). Upstream regulators (both activators and 
suppressors) for monocytes included many molecules 
common to all time points: 15-LOX, ACKR3, BTNL2, 
CSF2, ERG, ERK, filgrastim, IKZF1, lipopolysaccha-
ride, Msx3, OGA, PCYT2, PGR, PLA2R1, Progesterone, 
Rhox5, TNF, U18666A, and WAC (Additional file 2: Fig. 
S2; Additional file 1: Tables S3A-C). Upstream regulators 
for neutrophils predicted at all time points included the 
following: calcitriol, CIP2A, ciprofloxacin, CSF3, dexa-
methasone, ESR1, filgrastim, FOXO3, FOXO4, interferon 
beta-1a, LARP1, MRTFB, MYCN, NUPR1, OSM, RPS15, 
RRP1B, torin1, TP53, and YAP1 (Additional file  2: Fig. 
S3; Additional file 1: Tables S3 D-F).

In contrast, the vast majority of upstream regulators 
are unique for every TP in whole blood (Additional file 2: 
Fig. S4; Additional file  1: Tables S3 G-I). In addition, 
there are more regulators in the first 24 h in whole blood 
(Additional file 2: Fig. S4; Additional file 1: Tables S3 G-I), 

Fig. 1  Differential expression across time points. Differentially expressed genes (DEGs) across time points versus VRFC (0–24 h (TP1), 24–48 h (TP2), 
and >48 h (TP3)) in monocytes (A), neutrophils (B), and whole blood (C). Venn diagrams of the numbers of DEGs at each time point are shown on 
the left, and on the right, the corresponding bar plots are shown for the numbers of up- and downregulated DEGs found per time point
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consistent with the proportion of whole blood DEGs seen 
at this time point.

Identification of time‑dependent DEG clustering profiles
Tile mosaics based on self-organizing maps were con-
structed for DEGs with GEDI to allow an overall view 
of gene clusters across time by correlated expression. 
These mosaics reveal the distinctive dynamics of gene 
expression changes across every time point in monocytes 
(Additional file  1: Table  S4A), neutrophils (Additional 
file  1: Table  S4B), and whole blood (Additional file  1: 
Table  S4C) (Fig.  5). Every tile clusters a specific group 
of DEGs, and the tile mosaics for every time point show 
how that group of genes changes over time (Fig.  5 and 
Additional file 1: Table S4). Tracked at each coordinate, 
most tiles in the mosaic maps show evidence of dynamic 
changes at each time point (Fig. 5, 0 to >48 h).

To understand the trajectory of the DEG clus-
ters over time following stroke and to identify key 

genes per time window, we analyzed expression pro-
files using self-organizing maps (SOM) (Additional 
file 1: Table S5), where every cluster was plotted sepa-
rately to obtain a profile. For each cell type including 
monocytes (Additional file  1: Table  S5A), neutrophils 
(Additional file  1: Table  S5B), and whole blood (Addi-
tional file  1: Table  S5C), there were different patterns 
of gene expression that included increases over time, 
decreases over time, peaks at 24–48 h, and valleys at 
24–48 h (Fig.  6). Though comparable expression pat-
terns between monocytes, neutrophils, and whole 
blood are seen over time, these were associated with 
unique functions (GO) in each cell type (Fig.  6, Addi-
tional file  1: Tables S6A-L). Examples include neutro-
phil degranulation which increases over time in whole 
blood, decreases of IL-1 secretion over time in mono-
cytes, leukocyte migration peaking in neutrophils at 
24 h, and a valley for regulation of platelet activation at 
24–48 h in monocytes (Fig. 6).
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corrected p-value<0.05). FcγR-Phagocytosis: Fcγ receptor-mediated Phagocytosis in Macrophages and Monocytes; Ind, induction
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Time‑dependent gene expression changes per stroke 
etiology
To identify expression changes associated with IS causes, 
the same model and criteria for DEGs were used, but 
time points were considered as 0–24 h and over 24 h 
(>24 h) post-stroke in order to assure enough IS cases 
per etiology and time point. The cohort characteristics 
and analyses for the clinical variables after this re-strat-
ification can be found in Additional file 1: Table S7. The 
cohort was split according to the main IS etiologies: car-
dioembolic (CE, Additional file 1: Tables S8 A, B, G, H, 
M, N), large vessel (LV, Additional file 1: Tables S8 C, D, I, 
J, O, P), and small vessel (SV, Additional file 1: Tables S8 
E, F, K, L, Q, R).

More DEGs were identified in all IS causes vs. VRFC 
in the >24 h period than in the first 24 h for monocytes 
and neutrophils (Fig.  7, Additional file  1: Table  S8). In 
contrast, in whole blood the first day post-IS showed 
higher DEGs in CE and LV stroke, pointing to other criti-
cal cell types in the response within this time window 

(Fig. 7 and Additional file 1: Table S8). Gene expression 
tended to be suppressed in monocytes following CE, LV, 
and SV strokes at all time points, whereas gene expres-
sion was generally upregulated in neutrophils in all stroke 
etiologies at all time points (Fig. 7). Gene expression was 
increased in whole blood at 0–24 h in CV and LV strokes 
(Fig.  7). tPA treatment on 4–5 patients (depending on 
sample type) did not affect the gene expression changes 
identified. On PCA (principal component analysis), tPA 
subjects did not cluster specifically when assessing the 
DEGs in both 0–24h and >24 h (Additional file 2: Fig. S5).

Key DEG clusters per IS cause were identified using 
SOM for gene expression trajectories (Additional file  1: 
Table S9). Comparable expression trajectories over time 
are seen for CE, LV, and SV strokes in monocytes (Addi-
tional file 1: Tables S9 A, B, C), neutrophils (Additional 
file  1: Tables S9 D, E, F), and whole blood (Additional 
file 1: Tables S9 G, H, I) (Fig. 8), although not all trajec-
tory types are consistently present in every IS cause and 
in every sample type (Fig. 8).
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GO enrichment revealed the associated functions for 
similar profile trends in every sample type, which tended 
to be unique for each IS etiology and cell type (Additional 
file 1: Tables S10 A-W; Fig. 8). In neutrophils, for exam-
ple, the GO terms neutrophil migration and positive reg-
ulation of defense response are enriched in the profile of 
genes that decrease expression throughout TPs in LV and 
SV strokes, while it is not present in CE (Fig.  8). Inter-
estingly, regulation of neutrophil migration is enriched 
in the profile of DEGs that consistently increase expres-
sion in LV stroke in the whole blood samples (Additional 
file 1: Table S10).

Time‑associated gene expression networks/modules 
in monocytes, neutrophils, and whole blood
To analyze the time-dependent changes that occur after 
IS from a genome-wide perspective, we used Weighted 
Gene Co-expression Network Analysis (WGCNA). The 
gene expression counts for monocytes, neutrophils, and 
whole blood samples from IS patients were used to gen-
erate three separate networks (Additional file 2: Fig. S6), 
and significant modules of co-expressed genes were iden-
tified in relation to time (as continuous variable in hours 
post-IS) (Fig. 9A, Additional file 1: Table S11).

For monocytes, 36 modules of co-expressed genes and a 
module of unassigned genes (MON-Grey) were identified 
within this cell type network. Sixteen monocyte modules 
were found to be significant for time: MON-DarkRed, 

MON-MidnightBlue, MON-GreenYellow, MON-
Sienna3, MON-Red, MON-Pink, MON-LightCyan, 
MON-Violet, MON-Yellow, MON-DarkMagenta, MON-
SteelBlue, MON-Blue, MON-Grey60, MON-Tan, MON-
PaleTurquoise, and MON-Magenta (Fig.  9A). The gene 
lists for each of these 16 modules are provided in Addi-
tional file  1: Table  S11A. Of these, MON-GreenYellow 
and MON-Blue were also significantly related to diabetes. 
In neutrophils, 48 modules of co-expressed genes and a 
module of unassigned genes (NEU-Grey) were identi-
fied within the network (Fig. 9A). One neutrophil module 
(NEU-DarkSlateBlue) was significant for its relationship 
to time. The gene list associated with this one neutrophil 
module is provided in Additional file 1: Table S11B.

Within the whole blood network, 51 modules of co-
expressed genes and a module (WB-Grey) of unassigned 
genes were identified. Ten of these whole blood mod-
ules were significantly related to time: WB-Brown, WB-
Grey60, WB-Tan, WB-Turquoise, WB-MidnightBlue, 
WB-SteelBlue, WB-DarkRed, WB-SaddleBrown, WB-
Pink, and WB-MediumPurple3. Of these, WB-Tan and 
WB-DarkRed were also related to sex, while WB-Steel-
Blue and WB-MediumPurple3 were also related to age. 
The gene lists for each of these 10 whole blood modules 
are provided in Additional file 1: Table S11C.

Genes that are highly interconnected in each time-
associated module were also identified for all sample 
types. These represent “hub” genes with high potential 

Fig. 4  Enriched pathways in whole blood. A Venn diagram represents all enriched pathways at each of the time points (0–24 h, 24–48 h, >48 h; 
Fisher’s p-value<0.05). There was no overlap of pathways between the time points. B Top over-represented pathways with significant z-score (z ≥ 2, 
predicted activation) at 0–24 h and 24–48 h. No significant z-scores were predicted for pathways at >48 h. C Top over-represented pathways unique 
to each TP (Fisher’s p-value<0.05). Orange cells indicate positive z-score for the pathway, and blue indicate negative z-score. White bars indicate no 
direction can be predicted, and grey bars indicate no prediction can be performed. Up arrows indicate predicted significant activation (z ≥ 2)
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for functional or regulatory significance (Additional 
file  1: Table  S12). Examples of hub genes from the dif-
ferent modules in monocytes include the following: 
SCAF11, CREBZF, SETX, JAK1, EIF3F, HNRNPK, UBC, 
DICER1, CAPN2, RAB10, SF3B1, DAZAP2, UTY​, SPARC​
, PPP4C, and RAB11FIP1. Examples of hub genes from 

the different modules in whole blood include the fol-
lowing: TNFRSF18, PCSK9, IGSF9, MTHFSD, DCAF12, 
BCL2L1, MAU2, TLL2, FCRL6, PARVG, and VASP.

A tissue-specific network-based functional charac-
terization of the hub genes was performed [39] to gain 
perspective on the hub genes identified in monocytes 

Fig. 5  Dynamics of gene expression based on GEDI. Tile maps based on self-organizing maps are shown for all time points for monocytes, 
neutrophils, and whole blood. Each tile within a cell type represents the same set of genes across all 3 time points and VRFCs. Changes in color 
in a tile over the time points show changes in expression of the member genes over time, while constant color over the time points shows more 
constant expression levels. The asterisk (*) indicates tiles where immunoglobulin genes are present, and the plus (+) indicates the presence of 
interleukin receptor genes. On the right, gene density maps represent the number of DEGs per tile (genes clustered based on Pearson’s correlation). 
Tiles behaving similarly are placed in the same mosaic neighborhood. Letters on the tiles in the gene density map depict presence of specific cell 
markers in the DEGs in a specific tile (M: monocytes, G: granulocyte= neutrophils, basophils and eosinophils)
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(Fig. 9B, Additional file 1: Table S13A) and whole blood 
(Fig. 9C, Additional file 1: Table S13C). Neutrophils were 
not analyzed since only two hub genes were found: RP11-
35J10.7 and AP000593.6 (Additional file 1: Table S12B).

In monocytes, eight functional HumanBase mod-
ules were identified and included the following terms: 
response to virus and immune effector process (HG-
M1, Hub Genes in Monocytes cluster 1), RNA splic-
ing (HG-M2), RNA metabolism (HG-M3), DNA repair 
(HG-M4), cell morphogenesis (HG-M5), regulation of 
cell cycle (HG-M3 and HG-M6), cell adhesion and secre-
tion (HG-M7), and protein transport (HG-M8) (Fig.  9B 
and Additional file 1: Table S13). The terms for HG-M2-4 
are unique to monocytes (lists in Additional file  1: 
Table S13B). The network-based functional interpretation 
of the whole blood hub genes in time-related WGCNA 
modules identified five functional HumanBase mod-
ules that included the following terms: response to virus 
and immune effector process (HG-WB1, Hub Genes in 
Whole Blood cluster 1), leukocyte activation (HG-WB2), 
filopodium assembly (HG-WB3), regulation of cellular 
response to transforming growth factor beta receptor 
(HG-WB4), gene silencing (HG-WB4), and cytoskeleton 
organization (HG-WB5) (Fig.  9C and Additional file  1: 
Table S13D). The first two terms in HG-WB1 were shared 
between whole blood and monocytes HG-M1. The rest 

were only identified in whole blood (overlaps not shown, 
all lists available in Additional file 1: Table S13).

There was a significant correlation between the 
expression of some monocyte and whole blood hub 
genes with NIHSS on admission (Additional file  1: 
Tables S14A-B). Examples of hub genes in mono-
cytes that correlate with NIHSS included MIER1, 
DICER1, FBXW5, SELPLG, TIA1, and BCKDK (p < 
0.01, Additional file 1: Table S14A). There is no overlap 
between the NIHSS significantly correlated hub genes 
from monocytes and whole blood (Additional file  1: 
Table  S14). The hub genes identified in neutrophils 
included RP11-35J10.7 which is a novel transcript that 
is sense intronic to OVCH2 (ovochymase-2) (Addi-
tional file 1: Table S12B). The second was AP000593.6, 
a U2 small nuclear RNA auxiliary factor 1 (U2AF1), 
currently annotated as a pseudogene (Additional file 1: 
Table S12B). Since there were only two neutrophil hub 
genes, no additional functional analyses were per-
formed for neutrophils.

Gene markers delineating M1/M2 monocyte and 
N1/N2 neutrophil subsets were identified in the time-
related modules. Classical or inflammatory monocyte 
markers like CD14, CCR2, CSF1R, and non-classical 
or intermediate marker FCGR3A [40, 41] were found 
in three time-associated modules in monocytes 
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(Additional file 1: Table S11A) along with M2/N2 polar-
ization-related markers CCL2 and STAT3 [8, 42–44]. 
The presence of CCR2 in a time-related module, the 
main chemoattractant for monocytes to the injury site 
in IS [45, 46], may also suggest an active recruitment of 
this leukocyte type. In neutrophils, none of these mark-
ers were present in the modules, while in whole blood 
CCR2 and TNF (M2 [44, 47] and M1/N1 markers [43, 

48–50], respectively) were present in two significant 
time modules (Additional file 1: Table S11C).

Discussion
Ischemic stroke elicits specific responses in peripheral 
blood, which can be seen at the transcriptional level in 
monocytes and neutrophils [18] as well as other cell 
types. This is the first study to analyze those differences 

Fig. 7  Differentially expressed genes (DEGs) in stroke etiologies. Venn diagrams of the numbers of DEGs at each time point versus VRFCs after 
cardioembolic (CE), large vessel (LV), and small vessel (SV) strokes in monocytes (A), neutrophils (B), and whole blood (C) (left panels). On the right 
are the corresponding bar plots for the numbers of up- and downregulated DEGs found per time point and IS cause (0–24 h (TP1), 24–48 h (TP2), 
and >48 h (TP3))
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Fig. 9  Co-expression modules of genes significant to time after stroke, hub genes, and their functional clusters. A All WGCNA-identified gene 
co-expression modules in monocytes, neutrophils, and whole blood. Modules significant for time are labeled with an asterisk (*) and those 
additionally significant to another factor with two asterisks (**). Hub genes that varied as a function of time were clustered according to their 
functional organization (HG: hub gene module) in monocytes (HG-M) as shown in B (left panel), and in whole blood (HG-WB) in C (left panel). The 
top 3 most specific significant GO terms in each hub gene functional cluster are shown for monocytes in B (right panel) and for whole blood in C 
(right panel) (images modified from HumanBase). Reg: regulation

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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based on time trajectories in the early time window 
after stroke using RNA-seq. A summary of the flow of 
approaches utilized is presented in Additional file 2: Fig. 
S7. Hundreds of genes change expression at different 
time points following stroke, with most genes in neutro-
phils being upregulated and most genes in monocytes 
being downregulated over time. The genes that change 
expression at each time point and in each cell type are 
associated with specific pathways that are usually unique 
for each cell type and time. Self-organizing maps identi-
fied specific trajectories of gene expression for mono-
cytes, neutrophils and whole blood that were similar but 
were associated with differing signaling pathways. These 
pathways also differed as a function of cardioembolic, 
large vessel, and small vessel causes of stroke. We also 
show modules of genes that are co-expressed and change 
with time following stroke using WGCNA in neutrophils, 
monocytes, and whole blood. Specific hub genes (poten-
tial master regulators) were identified for modules that 
were associated with time after stroke. These analyses 
help understand genes and functions changing across 
the early post-ischemic stroke period and groups of 
genes that behave in a concerted fashion. Both aspects 
are important in the search for better understanding of 
the complex molecular and immune interactions after 
ischemic stroke to identify optimal treatment targets and 
their optimal time windows.

Gene expression dynamics after ischemic stroke
Differential gene expression changes in ischemic stroke 
(IS) versus controls were assessed by splitting subject 
samples into different time windows. Monocytes dis-
played downregulation of most of their DEGs, while 
neutrophils were generally upregulated. This is in accord-
ance with the up- and downregulation patterns seen in 
our previous study [18] that did not consider time. For 
both monocytes and neutrophils, the largest number of 
differentially expressed genes was observed at the 24–48 
h time point, whereas the greatest number of regulated 
genes in whole blood was observed at the 0–24 h time 
point. This suggests that additional cell types in whole 
blood may drive the early peripheral immune response in 
the first 24 h.

Canonical pathways associated with monocytes over 
time were mostly suppressed, similar to our previous 
findings [18]. Many of the over-represented functional 
pathways are shared in monocytes across time points, 
with very few shared pathways over time in neutro-
phils, and none in whole blood. These findings suggest 
more dynamic changes of genes and pathways in neutro-
phils and leukocytes, with much less dynamic change in 
monocytes at least over the first few days after a stroke. 
When analyzing enrichment of canonical pathways and 

prediction of upstream regulators, a z-score is calcu-
lated with Ingenuity software, where z ≥ 2 is activated 
(denoted ahead with subscript act) and z ≤ −2 is inhib-
ited (denoted ahead with subscript inh).

Cytokine expression changes, and specifically those 
of interleukins, were prominent and some changed with 
time in monocytes. Since changes of many interleukins 
have been directly quantified in blood of IS patients over 
time [51, 52], it was not surprising that we saw many 
changes of cytokine and interleukin genes representing 
their receptors. The IL-4 signaling pathway that is essen-
tial for M2 polarization [53] was enriched across all time 
points with IL-4 itself predicted as inhibited based on the 
observed overall gene expression profile in monocytes 
at 24–48 h and >48 h in this study. The IL-8 signaling 
pathway inh was also enriched across all time points in 
monocytes. Pro-inflammatory cytokine IL-8 has a role in 
monocytic recruitment, by promoting monocyte adhe-
sion to the vascular endothelium [54]. TGF-ꞵ (produced 
by M2 macrophages) has a protective role in stroke [55] 
and is inhibited in monocytes only at 24–48 h. IL-6 sign-
aling was enriched and significantly suppressed only at 
24–48 h, and IL-15 signaling is suppressed at all time 
points. IL-6 (pro- and anti- inflammatory cytokine) is a 
marker of infarct size and functional outcome and is part 
of M2 polarization signaling promoting monocytic dif-
ferentiation into macrophages [56–62]. IL-15 is mostly 
produced by monocytes and its blockade reduces brain 
injury after ischemia [63, 64]. In monocytes, IL-5inh, IL-
2inh, and TNFinh were predicted upstream regulators of 
gene expression at 0–24 h; IL-1Binh, IL-2inh, IL-3, IL-4inh, 
IL-5inh, IL-10inh, IL-13, IL-15, IL-33inh, and TNFinh are 
predicted upstream regulators at 24–48 h; and IL-2inh, 
IL-3, IL-4inh, IL-13, IL-33, and TNFinh are upstream regu-
lators at >48 h.

The release of granules from neutrophils results from 
IL-8 stimulation [65, 66], a pathway that was over-repre-
sented only at 24–48 h and predicted as inhibited. Other 
pathways uniquely enriched between 24 and 48 h post-IS 
included those for N2 markers TGF-β and IL-4. IL-4 acti-
vates neutrophils [67], and along with pro-inflammatory 
IL-1 and IL-7, are key for T-cell proliferation and homeo-
stasis [68].

The IL-15 pathway inh is enriched at 24–48 h and >48 
h, and IL-15 is identified as an upstream regulator itself 
at 24–48 h. IL-10 pathway and IL-2 pathway inh were only 
present in neutrophils at times >48 h. IL-10 is an anti-
inflammatory cytokine and N2 marker which decreases 
inflammation and apoptosis [62]. IL-15 induces changes 
in neutrophils and increases their phagocytic activ-
ity [69]. IL-2inh, a T-cell growth factor and activator, is 
predicted as inhibited in this study which corresponds 
with the temporal profile for this cytokine in IS [51, 70]. 
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Additionally, the N1 marker GM-CSF signaling path-
way, which is protective in experimental stroke [71], was 
enriched at > 48 h after stroke. IL-2, IL-3, IL-4, IL-5, IL-6, 
IL-10, IL-11RA, IL-15, IL-16, IL-23A, IL-32, and TNFinh 
were predicted upstream regulators of gene expression in 
neutrophils at 24–48 h, and IL-2, IL-3, IL-4, IL-5inh, IL-10 
and TNFinh are predicted upstream regulators of gene 
expression profiles seen in neutrophils at >48 h.

Whole blood over-represented pathways were most 
robust at 0–24 h after stroke, and rather than being 
related to cytokines or chemokines, they appear to relate 
to specific biological responses to ischemia including 
p53, ATM, cAMPact, and AMP-activated protein kinase 
signaling [72–77]. Ephrin receptor signaling act that is key 
in angiogenesis after stroke is over-represented in whole 
blood at 24–48 h after stroke [78]. In general, fewer 
canonical pathways were over-represented in whole 
blood, despite having as many or more DEGs as the 
monocyte and neutrophil datasets. This could be due to 
a wide range of biological processes that might be regu-
lated in opposite directions in a heterogeneous sample of 
multiple cell types from peripheral blood. This highlights 
the need to further delineate temporal changes of DEGs 
in each immune cell type following stroke. Though no 
cytokines were predicted as upstream regulators of gene 
expression in whole blood, there were a significant num-
ber of microRNAs at the three times that were identified 
as predicted upstream regulators.

The molecules identified as upstream regulators of 
gene expression in the different cell types might be par-
ticularly important therapeutic targets since they have 
potential to affect so many downstream genes with con-
certed expression changes after stroke [79]. For example, 
in neutrophils calcitriol is identified as an upstream reg-
ulator at all three time points, but with a trend towards 
suppression between 0 to 48 h, followed by activation 
at >48 h after IS. Though calcitriol has shown neuro-
protective effects in experimental models of IS [80–82], 
our human data might point to loss of efficacy outside 
of an early time window. Pterostilbene, an antioxidant, 
anti-inflammatory, and anti-apoptotic compound with a 
beneficial effect after stroke [83–86], was predicted as an 
upstream regulator of the observed changes in neutrophil 
gene expression but only at times >48h after IS.

Time‑associated gene expression modules and networks 
in monocytes, neutrophils, and whole blood
By analyzing correlation of co-expression patterns as a 
continuous variable over time, different modules and 
their associated hub genes were identified. Hub genes 
potentially drive the gene expression changes for the 
different modules of co-expressed genes. The most 

time-associated modules were associated with mono-
cytes followed by whole blood and then neutrophils.

Monocyte polarization markers are present in four 
time-associated modules, including the MON-LightCyan 
module where CD14 (Classical or inflammatory mono-
cyte marker) and STAT3 (M2 marker) genes are present. 
In this module, hub genes are also significantly enriched 
for monocyte-specific genes, suggesting that the expres-
sion dynamics of these genes could be critical for the 
monocyte response after stroke. Furthermore, the vast 
majority of the MON-LightCyan module hub genes dis-
play higher expression levels in classical monocytes (The 
Human Protein Atlas [41]). Other key markers present 
in time-related modules are CCR2 (Classical mono-
cyte marker), CSF1R (M2 polarization), and CCL2 (M2 
marker). Together, these results may indicate transforma-
tion of monocytes to the restorative M2 type over time, 
even within the ~72 h time period of this study. Nonethe-
less, the correlation of CCR2 with time is consistent with 
active recruitment of monocytes from the bone marrow, 
which is in line with experimental data where monocytes 
begin to accumulate around day 3 or later after ischemic 
stroke [87].

In neutrophils, the genes in the only time-significant 
module did not overlap with cell type or polarization 
markers. In contrast, the gene markers TNF-α (M1 and 
N1) and CCR2 (M2) were present in whole blood mod-
ules associated with time. As expected, different polari-
zation types are present in whole blood, the same is true 
for cell type markers, which were significantly enriched 
in several significant to time modules (monocyte, granu-
locyte, erythroblast, natural killer, and T cell markers). 
CCR2 expression in neutrophils is not expected in a rest-
ing state, but has been linked to altered neutrophil pro-
gramming in inflammatory states [88] and promoting 
chemotactic attraction to the injury site [88].

The functional and biological roles of the highly inter-
connected time-associated hub genes identified through 
WGCNA point to unique processes and drivers of gene 
expression in monocytes and whole blood. Hub genes 
in monocytes are enriched significantly for RNA splic-
ing and RNA metabolism functions. This may reflect 
active formation of specifically spliced gene transcripts 
in the response to injury and timing of polarization 
which likely changes as monocytes move from inflam-
matory to restorative subtypes (M1 and M2 monocytes, 
respectively).

Hub gene functional modules in whole blood represent 
a composite of the gene expression changes in individual 
immune cell types. Enrichment of a wide host of func-
tions including leukocyte activation, filopodium assem-
bly, cytoskeleton organization, regulation of cellular 
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response to transforming growth factor beta receptor, 
and gene silencing point to the breadth of cell types 
in blood undergoing cell proliferation, activation, and 
migration in the first 72 h after ischemic stroke. Through 
different approaches, Li et  al. [89] identified several 
stroke-related hub genes, where one of them is common 
to our analysis in whole blood hub genes (TSPAN14). 
This gene is involved in the regulation of Notch signaling 
pathway [90] and may be a promising target in CE stroke.

Several time-associated hub genes were positively 
correlated with NIHSS (NIH stroke scale, a measure of 
stroke severity) at admission. In monocytes, a positive 
significant correlation with NIHSS was found for TIA1 
(T-cell-restricted intracellular antigen-1 aka cytotoxic 
granule associated RNA binding protein), an anti-inflam-
matory protein in peripheral tissues and a repressor of 
TNF-α expression. It is a M1 marker and a key regulator 
of the innate immune response of the CNS during stress 
[91–93]. MIER1, a transcriptional repressor [94], and 
RMI1, a DNA repair protein [95], were also positively 
correlated with stroke severity. Variants in these genes 
are associated with monocyte counts [96] and myeloid 
white cell counts [96], respectively; and expression posi-
tively correlates with the infiltration of monocytes, mac-
rophages, and other immune cells in gastric carcinoma 
[97]. Other NIHSS-time-associated hub genes (positive 
correlation) included the following: SELPLG, high affin-
ity receptor for cell adhesion molecules in leukocytes 
[98]; GNAI3, associated with the response to intracer-
ebral hemorrhage [99] and involved in VEGF-induced 
angiogenesis [100]; and FBW5, an E3 ubiquitin ligase 
and negative regulator of MAP 3K7/TAK1 signaling in 
the interleukin-1B (IL1B) signaling pathway [101]. IL1B 
is a key player in the pathogenesis of brain damage after 
ischemia [102–104] .

In neutrophils, time-associated hub genes did not show 
a significant correlation with NIHSS at admission. Only 
one gene in the time-significant module, MCTS1, nega-
tively correlated with stroke severity. MCTS1 is a trans-
lation enhancer [105] and is a target of let7i, which is 
involved in leukocyte attachment and recruitment to the 
endothelium in the brain [106, 107].

In whole blood, immunoglobulin constant region and 
variable region genes are hub genes in time modules. 
IGLV1-40, IGLV3-27, IGKV1-12, IGHV3-30, and IGLC3 
showed positive correlation with NIHSS at admission. 
This highlights changes in the humoral immune response 
across early times after stroke and could relate to stroke 
outcomes [108]. However, given that most of the genes 
code for variable region chains, this response may also 
be variable across patients. Further studies are needed to 
examine these immune humoral profiles and their rela-
tionship to evolving stroke injury and repair.

Refining key genes and responses after IS by analyzing 
gene clusters
GEDI
To generate DEG clusters based on self-organizing maps, 
tiled mosaics were constructed for each cell type over the 
three time windows. The GEDI [31] maps allow visual-
izing coordinated gene expression changes across time 
for smaller groups of DEGs (1–77 genes per tile/cluster, 
averaging 11.9 (M), 9.9 (N), 8.4 (WB)), and to visually 
compare distinct organization of the mosaics between 
monocytes, neutrophils, and whole blood. In the mosa-
ics, tiles of interest are those that have marked differences 
in expression at a specific time point, those that change 
consistently through time, and those that maintain con-
stant expression levels across time. From the DEGs 
grouped in different tiles, monocyte and neutrophil-spe-
cific markers were identified. Most tiles containing these 
markers were neighboring each other, likely because 
they were correlated by expression through the dimen-
sion reduction used to construct the GEDI maps. None-
theless, in whole blood, the cell-specific marker genes 
present in some tiles (monocytes, granulocytes, erythro-
blast, B cells, and megakaryocytes) do not group in the 
same neighborhoods. Analyzing distant cell marker tiles 
can be critical to refine different functional relevance for 
the DEGs in those tiles.

In the monocyte GEDI maps, the lower left tile is one 
case of a cell marker-containing tile that is unrelated to 
other tiles in the mosaic with other cell-specific mark-
ers. This tile/group of DEGs has sustained low expression 
(namely 1,7) and contains the monocyte marker CAC-
NA2D4 (Calcium voltage-gated channel auxiliary subu-
nit alpha2delta 4). This gene displays higher expression 
in classical monocytes (http://​www.​prote​inatl​as.​org) [41, 
109] and belongs to the TCR signaling pathway. CAC-
NA2D4 gene expression dynamics, as visible in its GEDI 
tile, could indicate a switch to non-classical monocytes. 
Closer examination of the same tile shows other genes 
including SURF1 (Cytochrome C Oxidase Assembly Fac-
tor) and TSPAN14, which are associated with monocyte 
counts in genetic studies [96]. Other genes in this clus-
ter include DNPH1 (2’-deoxynucleoside 5’-phosphate 
N-hydrolase 1), ZBTB5 (Zinc finger and BTB domain 
containing 5), MTBP (MDM2 binding protein), and six 
other uncharacterized transcripts, which may share simi-
lar roles to the other genes in the tile. These expression 
correlations still do not fully define shifts towards a cell 
subtype, like classical, non-classical, and intermediate 
monocytes. For example, TSPAN14 is highly expressed 
in non-classical monocytes more than in other subtypes, 
while DNPH1 is predominant in intermediate mono-
cytes. Altogether, looking at specific tiles can implicate 

http://www.proteinatlas.org
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key genes and cellular processes that change with time 
after stroke.

In monocytes, “neighborhoods” of tiles with mono-
cyte markers can be seen on the upper and lower parts 
of the mosaic. These tiles showed different trends across 
time, from decreasing expression (tile 1,1) to unchanged 
gene expression (i.e., 1,7; 5,1; and 5,2). The grouping of 
cell-specific genes is also seen and even more accentu-
ated in neutrophils, where granulocyte markers cluster in 
four opposite corners of the mosaic, displaying increas-
ing or consistent high expression. Also in these neutro-
phil mosaics, two upper tiles in opposite corners (namely 
2,1—left and 7,1—right) rapidly change expression across 
TPs 1 and 2, and then decrease to reflect levels more like 
TP0/controls. These tiles also have interleukin receptor 
genes (Fig. 5, depicted by +). Tile 2,8, which contains an 
immunoglobulin gene (depicted with *), shows a pattern 
of increasing expression across time. DEGs of interest 
present in tile 2,8 of the neutrophil mosaic include TLR5, 
an activator of the innate immune response [110], and 
platelet aggregation gene PDK1, key for cell division in 
hypoxic conditions [111]. This tile also includes relevant 
genes that have robust expression in healthy granulocytes 
or neutrophils, but in stroke are more suppressed in TP3, 
like KREMEN1, a negative regulator of Wnt/β catenin 
pathway [112] and PPP4R2, a modulator of neuronal dif-
ferentiation and survival [113].

Additionally, we consistently see dynamic profiles of 
immunoglobulin expression in our samples including the 
whole blood mosaic (left lowermost tiles). These clus-
ters of DEGs peak in the first 24 h and decrease there-
after. Several immunoglobulin genes are expressed as 
a function of time across samples. B cell activation and 
increased immunoglobulin production have been dem-
onstrated after stroke [114–116]. Further work could 
elucidate whether the immunoglobulin genes detected in 
this study are related to the expected immune response 
after stroke, or to the production of autoantibodies seen 
in ischemic stroke patients [117–120]. The latter will 
be interesting to explore, given the cellular response to 
brain antigens is associated with infarct size and out-
come [121, 122].

Similar expression dynamics by SOM
Self-organizing map (SOM) profiles enable grouping of 
the DEGs into clusters based on trajectory/directional-
ity of expression changes and their functional associa-
tions across the time following stroke. After analyzing 
GEDI tiles, this is also useful because ontology analyses 
are more precise in larger gene groups and SOM profiles 
draw from larger and/or more balanced clusters. These 
profiles are crucial for understanding which molecular 
pathways and cell types show progressive activation or 

suppression over time, or whether they have “peaks” or 
“valleys” of expression over time.

In monocytes and neutrophils, the profiles of DEGs 
that peak only in the first 24 h after stroke are enriched 
for myeloid leukocyte activation and leukocyte migra-
tion, respectively. Interleukin-1 beta secretion in mono-
cytes, and positive regulation of reactive oxygen species 
metabolism in neutrophils, are over-represented in pro-
files that decrease expression over time. Genes that are 
suppressed between 0 and 24 h and then recover to lev-
els seen in VRFCs are enriched for terms related to JNK 
and MAPK cascades, platelet activation, and macrophage 
chemotaxis in monocytes. This pattern also has over-
representation of chemokine production and leukocyte 
aggregation genes in neutrophils. Opposite trends can 
also be seen between monocytes and neutrophils: Cdc42-
associated signaling (critical in cell growth and differenti-
ation [123]) is enriched in DEGs that decrease expression 
over time in monocytes, while in neutrophils Cdc42-
associated signaling is associated with genes that increase 
expression over time.

Furthermore, the trajectory of the SOM profiles 
detected in the DEGs at different time points could be 
used to prioritize diagnostic biomarker candidates. A 
diagnostic panel that could be used to diagnose stroke 
in the first 3 days should primarily include DEGs that 
either consistently increase or consistently decrease over 
the 3 days after IS. Such panels could indicate not only 
that an ischemic stroke had occurred, but could indi-
cate roughly how much time had elapsed following the 
stroke—something that cannot be estimated with current 
methodology.

Refining genes for cardioembolic, large vessel, and small 
vessel strokes
There were large numbers of DEGs expressed in mono-
cytes and neutrophils for each cause of stroke (CE, LV, 
SV) with somewhat more DEGs 24 h after stroke. In con-
trast, there were many more DEGs expressed in whole 
blood at 0–24 h in CE, LV, and SV stroke. This suggests 
that other cells (e.g., B and T cells) in whole blood (in 
addition to neutrophils and monocytes) were contribut-
ing to the whole blood responses to stroke at 0–24 h.

The trajectories of SOM profiles in strokes of all causes 
combined were similar to profiles for each stroke cause 
including CE, LV, and SV causes of strokes. Though the 
temporal profiles were similar, the DEGs and enriched 
GO terms were generally different for CE, LV, and SV 
causes of stroke in monocytes, neutrophils, and whole 
blood. There were exceptions, such as the “Regulation of 
Golgi to plasma membrane protein transport” pathway, 
which progressively decreased in expression in mono-
cytes in CE, LV, and SV stroke, a pathway shown to affect 
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outcomes in experimental stroke [124]. Another example 
was “NADH oxidation” which peaked at 24 h in neutro-
phils in CE, LV, and SV strokes and is known to play a 
role in experimental stroke [125]. There were few shared 
GO terms enriched in DEGs in whole blood CE, LV, and 
SV strokes, likely related to the cellular heterogeneity of 
whole blood.

SOM profiles identified important attributes of DEGs 
from opposite expression trajectories and between IS 
etiologies. In neutrophils, the toll-like receptor signal-
ing pathway is associated with a profile that decreases 
at less than 24 h and increases after 24 h in CE stroke. 
In contrast, for LV, the toll-like receptor pathway is 
enriched in a profile that decreases at all times compared 
to controls. Toll-like receptor signaling modulates criti-
cal immunomodulatory NFkB signaling and is a promis-
ing target for treating cardiovascular disease [126–128] 
(clini​caltr​ials.​gov ID# NCT04​734548). TLR signaling 
impacts downstream pro- or anti-inflammatory mol-
ecules, including TNF-α, interleukins, interferons, and 
TGF-β [129].

There are also differences between SOM profiles in 
whole blood for different causes of stroke. “Positive reg-
ulation of IL-1β secretion” genes peak in the first 24 h 
in CE and LV strokes, whereas in SV stroke IL-1 genes 
decrease at 24 h and then recover at times after 24 h. 
An example of the complexity of the profiles is observed 
for whole blood in SV strokes where both a peaking of 
positive regulation of cytokines is noted at 24 h with 
decreases thereafter, as well as consistent increase over 
time of pathways associated with negative regulation of 
cytokines. Thus, either different cell types in whole blood 
are responding differently, and/or different cytokines 
are being regulated differently. This serves to emphasize 
how complex the temporal and cellular responses are to 
stroke, and to warn against time-agnostic approaches to 
treatment at single times of strokes of different causes. 
Although the analyses subgrouping by IS cause and time 
point could be considered as exploratory due to smaller 
sample size, they highlight an important consideration 
for future studies to determine biomarker and treatment 
targets.

Limitations
Though it was possible to identify markers for monocyte 
and neutrophil polarization in either direction (inflam-
matory or anti-inflammatory types), it was not possible 
to define a unique shift towards a specific subtype since 
we expect that both M1/M2 and N1/N2 phenotypes are 
present in the samples of pooled cells in the ~3 day time 
window studied here. It is possible that studying longer 
times after stroke might allow detection of these shifts in 

gene expression responsible for the evolution into polar-
ized M2 or N2 phenotypes. Moreover, future single-cell 
RNA-seq studies should enable a better identification 
of the different cell subpopulations present at each time 
point.

This study employed single samples from single 
patients at different times. Thus, the changes of gene 
expression represent the average of multiple patients 
over the times stipulated. We have shown that indi-
vidual genetic variation plays a key role in the specific 
expression response after stroke [130]. Our approach 
presented here based on the availability of samples 
would include inter-individual variability of expression 
as compared to differences measured in a single subject 
over time. Thus, future studies should consider a serial 
sample approach in every subject over longer periods 
of time to investigate gene expression dynamics in 
every subject and see how these vary between subjects 
as a function of time and its relation to infarct volume, 
evolving NIHSS, and other clinical variables.

A strength of the study was the multiple analyti-
cal approaches used, including differential expres-
sion, GEDI, SOM, and WGCNA, with each providing 
insight to the complexity and dynamics of gene expres-
sion changes after stroke. SOM in particular was able 
to demonstrate how pathways changed over time for 
each cell type and cause of stroke. WGCNA identi-
fied modules of co-expressed genes and associated hub 
genes that changed over time. However, even WGCNA 
had some weaknesses in that few hub genes and only 
one time-associated module were identified in neutro-
phils. Both these results likely arose from differences 
in size of input list of genes or specific parameters 
used in the models, since we indeed observed slightly 
more time-regulated DEGs in neutrophils compared 
to monocytes when studied by time point. Since 
WGCNA identified modules that correlated with the 
continuous time parameter, it may have missed mod-
ules with complex dynamic profiles (like the identified 
SOM profiles). Pathway and functional analyses helped 
to interpret aggregate shifts of groups of genes, while 
reducing the impact of potential false positives of 
individual genes. Though these results are likely to be 
more reliable, they are hampered in the current study 
by the small sample size for many of the time points 
particularly for those considering different causes of 
stroke in the three sample types examined (isolated 
monocytes, isolated neutrophils, whole peripheral 
blood). For example, subgrouping of TP3 resulted in a 
group of female only subjects, which may impact the 
genes discovered for that time point in particular, as 
sex influences gene expression and immune response 
after stroke [25]. Because of demographics and group 

http://clinicaltrials.gov
https://clinicaltrials.gov/show/NCT04734548
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size, gene identification for the first 48 h is more 
robust than over 48 h. Limitations such as this could 
be addressed in future studies with much larger sample 
sizes of blood samples collected over multiple times 
in a true longitudinal fashion from each subject. Still, 
the use of a parallel analysis approach like co-expres-
sion networks, which accounted for change of time as 
a continuous variable, also supported gene discovery 
for later times. Overall, however, each of these ana-
lytical approaches provided unique insights into the 
pathophysiology of stroke based upon cells in blood 
which modulate the peripheral clotting and immune 
responses in stroke.

Conclusions

–	 We identified key genes associated with time in the 
response from leukocytes after ischemic stroke. 
Some of these correlated with stroke severity.

–	 Differentially expressed genes have distinctive tra-
jectories for all IS etiologies analyzed, which allows 
refinement of critical genes and functions at specific 
time points after stroke.

–	 Altogether, the identified changes in gene expression 
and pathways over time are critical for understand-
ing how the immune and clotting systems change 
dynamically after stroke, and point to the complexi-
ties of identifying biomarkers and treatment targets 
for stroke.
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point (Fisher’s p-value<0.05). Up arrows indicate predicted significant 
activation (z ≥ 2) or down arrow - significant inhibition (z ≤ −2). White 
cells indicate no direction can be predicted. (*= Benjamini-Hochberg 
corrected p-value<0.05). R: receptor; N.R: nuclear receptor. Supplemental 
Figure 3. Predicted upstream regulators for neutrophils. (A) Venn diagram 
represents all upstream regulators predicted at 0-24 h, 24-48 h, and >48 
h (Fisher’s p-value<0.05). (B) Top over-represented regulators shared at all 
time points (Fisher’s p-value<0.05). (C) Top over-represented regulators 
that are specific for each time point (Fisher’s p-value<0.05). Up arrows 
indicate predicted significant activation (z ≥ 2) or down arrow - significant 
inhibition (z ≤ −2). White cells indicate no direction can be predicted. 
(*= Benjamini-Hochberg corrected p-value<0.05). R: receptor; endo: 
endogenous; reg: regulator. Supplemental Figure 4. Predicted upstream 
regulators for whole blood. (A) Venn diagram represents all upstream 
regulators predicted at 0-24 h, 24-48 h, and >48 h (Fisher’s p-value<0.05). 
(B) Only 2 predicted regulators (Fisher’s p-value<0.05) are shared for the 3 
time points. (C) Top over-represented regulators that are specific for each 
time point (Fisher’s p-value<0.05). Up arrows indicate predicted significant 
activation (z ≥ 2) or down arrow - significant inhibition (z ≤ −2). White 
cells indicate no direction can be predicted. R: receptor; reg: regulator; 
endo: endogenous. Supplemental Figure 5. tPA administration is not 
associated with differential expression. A) Characteristics of the five cases 
where tPA was administered. Principal Component Analyses (PCA) using 
the DEGs from the time points 0-24 and >24 h in LV and SV strokes in B) 
monocytes, C) neutrophils, and D) whole blood samples. Cases where 
tPA was administered are colored in orange. Supplemental Figure 6. 
Co-expression network construction. WGCNA Soft-thresholding power 
scale free topology fit (left panel) and mean connectivity (right panel) 
plots for all genes analyzed in (A) monocytes, (B) neutrophils and (C) 
whole blood. Reference lines are at 0.8 (red) and 0.9 (green) on the left 
panels and at 100 (red) and 200 (green) on the right panels. Supplemen‑
tal Figure 7. Workflow of the study. Monocytes and neutrophils were 
isolated by flow cytometry (scatter plots adapted in part from Carmona-
Mora et al. [18]. RNA-seq from the isolated cell samples and whole blood 
was used for two parallel approaches: differential expression and co-
expression networks. For the first one, patients were split into time point 
groups and self-organizing maps were constructed with the differentially 
expressed genes. For the construction of co-expression networks, time 
was considered as a continuous variable.
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