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Abstract 

Background  Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic 
and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes long COVID, it has proven 
especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. 
The clinical definition and our understanding of the underlying mechanisms of long COVID are still in flux, and the 
deployment of an ICD-10-CM code for long COVID in the USA took nearly 2 years after patients had begun to describe 
their condition. Here, we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in 
the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for “Post COVID-19 condition, 
unspecified.”

Methods  We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code 
(n = 33,782), including assessing person-level demographics and a number of area-level social determinants of health; 
diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications 
and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern 
differing patterns of care across the lifespan.

Results  We established the diagnoses most commonly co-occurring with U09.9 and algorithmically clustered them 
into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we 
discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, 
non-Hispanic individuals, as well as individuals living in areas with low poverty and low unemployment. Our results 
also include a characterization of common procedures and medications associated with U09.9-coded patients.

Conclusions  This work offers insight into potential subtypes and current practice patterns around long COVID and 
speaks to the existence of disparities in the diagnosis of patients with long COVID. This latter finding in particular 
requires further research and urgent remediation.
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Background
Naming diseases is an ever-present challenge, and there 
is no shortage of efforts that aim to better standardize, 
disambiguate, and keep track of disease nomenclature 
and definitions [1–4]. Disease naming has long been 
controversial–for example, there are more than 400 
names for syphilis dating back to the fifteenth century 
[5]. Naming a disease requires defining it, and assigning 
a standard code to the disease facilitates research, care, 
and patient engagement due to the ease of patient clas-
sification and knowledge exchange. However, naming 
and coding a disease does not mean the disease did not 
exist prior to its naming or coding. For instance, although 
“SARS-CoV-2” and “COVID-19” were both coined on 
February 11, 2020, by the International Committee on 
the Taxonomy of Viruses and the World Health Organi-
zation (WHO), respectively [6, 7], we know that cases 
of COVID-19 began to surface in Wuhan, China in late 
December 2019 [8]. In the USA, most diagnostic cod-
ing uses the International Classification of Diseases 10th 
edition, clinical modification (ICD-10-CM) terminology; 
however, the ICD-10-CM code for COVID-19, U07.1, 
was not made available for use until April 1, 2020. The 
implications of this naming delay are wide-ranging. To 
this day, US COVID-19 cases prior to April 1, 2020, are 
difficult to retrospectively ascertain. Even after that date, 
use of U07.1 for COVID-19 phenotyping came with cave-
ats–use of the new code was inconsistent and of variable 
sensitivity and specificity, and studies have shown both 
underuse and overuse of U07.1 in different contexts and 
health systems [9–11].

Long COVID, which is included in the more general 
term of post-acute sequelae of SARS CoV-2 infection 
(PASC), is also subject to the effects of delayed naming. 
By Spring of 2020, patients suffering from long COVID 
had coined various terms to describe the condition, 
including the COVID-19 long tail, long-haul COVID, and 
long COVID [12–14]. Long COVID is defined by ongo-
ing, relapsing, or new symptoms or other health effects 
occurring after the acute phase of SARS-CoV-2 infection 
(i.e., present four or more weeks after the acute infec-
tion). Heterogeneous symptoms may include, but are not 
limited to, fatigue, difficulty breathing, brain fog, insom-
nia, joint pain, and cardiac issues [15–17]. As the impact 
of long COVID on health and quality of life became 
increasingly clear at a population level, patients world-
wide came together to urge healthcare systems and poli-
cymakers to acknowledge this condition [18, 19].

Despite the relatively early recognition of this condi-
tion, an ICD-10-CM code (U09.9, “Post COVID-19 con-
dition, unspecified”) was not made available for use in the 
clinical setting until October 2021. Moreover, this single 
code may prove insufficient: considering the phenotypic 

and severity variation seen in long COVID patients, it is 
likely that subtypes of long COVID exist, and such sub-
types may correlate with specific underlying mechanisms 
that should be targeted by different interventions.

Regardless, the fact remains that there is more nam-
ing to be done, and a particular need to define and refine 
computable phenotypes for long COVID and its sub-
types. As can be seen by the widely differing estimates 
of long COVID prevalence across many studies, a lack 
of definitional consistency is affecting the accuracy and 
reproducibility of otherwise robust research [20]. Among 
other advantages, refined definitions will enable us to 
appropriately define cohorts for clinical studies, provide 
more precise treatment and clinical decision support, 
and accurately estimate long COVID’s incidence and 
prevalence. This is a key priority for the parent program 
for this work, the NIH Researching COVID to Enhance 
Recovery (RECOVER) Initiative [21], which seeks to 
understand, treat, and prevent PASC through a wide 
variety of research modalities, including electronic health 
record (EHR) and real-world data.

In response to the COVID-19 pandemic, the US infor-
matics and clinical community harmonized an enormous 
amount of EHR data to reveal candidate risk factors and 
therapies associated with COVID-19. The National Insti-
tute of Health’s (NIH) National COVID Cohort Collabo-
rative (N3C) is now the largest publicly available Health 
Insurance Portability and Accountability Act (HIPAA) 
limited EHR dataset in U.S. history, with over 16 mil-
lion patients. Due to the scale and demographic and geo-
graphic diversity of data within the N3C, it is uniquely 
well-suited to characterize the early use of the new long 
COVID ICD-10-CM code. Here, we seek to characterize 
both (1) the early clinical use patterns of U09.9 and (2) 
the patients receiving that code from a provider. These 
characterizations reveal interesting patterns that may 
enable us to glean a better understanding of rough sub-
types of long COVID, current clinical practices for diag-
nosis and treatment of long COVID, and potential racial 
and social disparities affecting who seeks and receives 
care for long COVID. Ultimately, identifying patients 
with long COVID based upon multiple means of inquiry 
(including U09.9) is critically important to recruit par-
ticipants for research studies, assess the public health 
burden, and support nimble analytics across our heterog-
enous health care systems.

Methods
To characterize the use of the U09.9 code, we used EHR 
data integrated and harmonized inside the NIH-hosted 
N3C Secure Data Enclave to identify clinical features co-
occurring around the time of patients’ U09.9 index date. 
The methods for patient identification, data acquisition, 
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ingestion, and harmonization into the N3C Enclave have 
been described previously [22–24]. Briefly, N3C con-
tains EHR data for patients (1) who tested positive for 
SARS-CoV-2 infection; (2) who have a diagnosis code 
for COVID-19 (U07.1), multisystem inflammatory syn-
drome (MIS-C, M35.81), or long COVID (U09.9); (3) 
whose symptoms are consistent with a COVID-19 diag-
nosis; or (4) are demographically matched controls who 
have tested negative for SARS-CoV-2 infection (and have 
never tested or been diagnosed as positive) to support 
comparative studies. Lookback data are available from 
January 2018 forward for each patient.

In this retrospective cohort study, we defined our initial 
population (n = 36,880, sourced from 34 different health 
care systems) as any non-deceased patient with one or 
more U09.9 diagnosis codes recorded between October 
1, 2021, and May 26, 2022. U09.9 codes appearing prior 
to October 1, 2021, may have been retroactively applied 
to these patients’ records (e.g., as “onset dates” in an EHR 
Problem List), therefore making it difficult to determine 
an index date that reflects the actual date of diagnosis. We 
excluded patients (n = 3098) whose U09.9 index occurred 
during an inpatient hospitalization, due to the difficulty 
of distinguishing co-occurring clinical features related 
to long COVID versus the primary reason for their hos-
pitalization. After these exclusions, a base population of 
33,782 remained. Note that we did not require patients in 
our cohort to have a COVID-19 diagnosis code (U07.1) 
or positive SARS-CoV-2 test on record, as many patients 
with long COVID do not have this documentation [19]. 
This lack of documentation will only increase over time 
with the rise of at-home testing.

It should be noted that in a large, harmonized data-
set such as N3C, we are not able to differentiate clini-
cal diagnosis codes (i.e., a code entered by a provider 
to signify “this patient has this disease,” often as part of 
an EHR Problem List) and billing diagnosis codes (i.e., a 
code entered by a provider or medical coder to support 
billing or insurance reimbursement for the visit) with 
high certainty. Use of the U09.9 code in both contexts is 
important to examine; in this analysis, those contexts are 
combined.

Data from 34 of the 76 N3C sites were used for this 
analysis. The remaining sites either (1) did not use the 
U09.9 code in their N3C data or had not refreshed data 
since November 1, 2021, meaning the U09.9 code would 
not be present even if used at the site (n = 21 sites); (2) 
had location data missing for all patients (n = 12 sites); 
or (3) did not meet the minimum criteria we set for site 
data for all RECOVER-related analyses (n = 9 sites): 
(a) >  = 25% of inpatients with at least one white blood 
cell count and at least one serum creatinine (to ensure lab 
measurement completeness); (b) 75% of inpatient visits 
have valid end dates; and (c) dates must not be shifted by 
the site more than 30 days. Additional N3C data quality 
criteria have been described previously, and also apply 
to this work; a summary of these checks is included in 
Additional file  1: Supplemental Methods [23]. The 34 
sites used here are diverse in geographic location and 
institution size, but cannot be specifically named due to 
N3C governance policies. Though the N3C data are har-
monized, there is variation in the timing of U09.9 uptake 
among the 34 sites. A visualization of these temporal dif-
ferences is included as Additional file  1: Supplemental 
Fig. 1.

Fig. 1  Clinical use of B94.8 decreases as U09.9 becomes available. Prior to U09.9’s release, the CDC recommended use of B94.8 (“Sequelae of 
other specified infectious and parasitic diseases”) as a placeholder code to signify long COVID. As this code is not specific to sequelae of COVID-19, 
this figure shows consistent but infrequent use during two pre-pandemic years. Use of B94.8 ramps up in Spring of 2020, suggesting increased 
recognition of long COVID by providers. However, upon its release in October 2021, U09.9 supplants B94.8 in terms of usage frequency
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We calculated person-level demographics and a num-
ber of social determinants of health (SDoH) variables 
at the area level. These variables are sourced from the 
American Community Survey (ACS) 2019 5-year esti-
mates at the ZIP Code Tabulation Area (ZCTA) level 
[25]. ZCTAs were mapped to the patients’ 5-digit ZIP 
code using the USD mapper [26]. SDoH variables were 
categorized into high, medium, and low based on per-
centiles for all ZIP codes in the ACS dataset. We then 
characterized this cohort by examining diagnoses, pro-
cedures, and medications that occurred between each 
patient’s U09.9 index date and 60 days after index (here-
after referred to as our “analysis window”).

Diagnosis analysis
Our objective in characterizing diagnoses around the 
U09.9 index date was not only to catalog conditions and 
symptoms that tend to co-occur with the U09.9 diagno-
sis, but also to determine which of those conditions and 
symptoms tend to co-occur with each other. In doing 
so, we begin to see clusters of conditions that are more 
likely to occur together within a single patient’s record. 
First, we extracted all conditions in each patient’s record 
within the analysis window and identified the most fre-
quently occurring conditions in the study population. 
We did not exclude conditions if they were also reported 
prior to the patient’s U09.9 index date. Excluding such 
conditions would discount the possibility that pre-exist-
ing conditions could be exacerbated by long COVID, or 
that long COVID could be associated with new, unre-
lated instances of prior conditions (e.g., abdominal pain). 
Because this level of detail is not knowable, our clus-
ters are intended to represent co-occurrence with long 
COVID, and cannot be interpreted as causation by long 
COVID.

We then constructed an adjacency matrix for the 
top 30 conditions, with values indicating the fre-
quency of co-occurrence between two conditions in the 
study population. From this matrix, we constructed a 
weighted network with nodes representing individual 
diagnoses, edges between nodes representing co-occur-
rence, and edge weights corresponding to the count of 
patients with both conditions. In order to detect con-
ditions that are more likely to co-occur in our study 
population than at random, we tested the Louvain [27], 
Walktrap [28], and Girvan-Newman [29] algorithms 
for community detection. We selected the Louvain 
algorithm in our final model, as it maximized modu-
larity while retaining a reasonable resolution of detec-
tion. For further subgroup analyses, we present clusters 
detected within age-stratified condition co-occurrence 
networks. Additional details on community detection, 

network stability, and subgroup analyses are available 
in Additional file 1: Supplemental Methods.

Procedure analysis
Characterizing common procedures around the time 
of U09.9 allowed us to assess current practice patterns 
(i.e., diagnostics and treatments) for patients receiv-
ing the code. We defined a “procedure” as any medical 
diagnostics or treatments rendered by a healthcare pro-
vider. We excluded non-informative records that sim-
ply reflect that an encounter took place (e.g., Current 
Procedure Terminology (CPT) 99212, “Office or other 
outpatient visit”), despite their technical classification 
as “procedure codes.” We then aggregated the remain-
ing procedures into high-level categories (e.g., “radi-
ography,” “physical therapy”) in order to discern the 
diagnostics and treatments that occurred within each 
patient’s analysis window.

Medication analysis
As with diagnoses and procedures, we extracted all medi-
cation records occurring within each patient’s analy-
sis window, in order to characterize newly prescribed 
medications that may be used to treat symptoms of long 
COVID. In order to focus on newly prescribed medica-
tions and not long-standing prescriptions, we excluded 
medications for each patient for which there were 
records prior to the patient’s U09.9 index. Medications 
were categorized using the third level of the Anatomical 
Therapeutic Chemical (ATC) classification system [30]. 
Results of this analysis are shown in Additional file  1: 
Supplemental Fig. 2.

Results
Greater severity of acute SARS-CoV-2 infection does 
not appear to have an outsize influence in determining 
which patients end up with a U09.9 code; 3266 of the 
U09.9 patients (9.7%) were hospitalized during a prior 
acute SARS-CoV-2 infection. This proportion of hos-
pitalized patients is markedly lower than that cited in a 
recent FAIR Health white paper, which noted that 25% of 
patients with a U09.9 code recorded in claims data had 
been hospitalized with acute COVID-19 [31]. Of the 
patients hospitalized with acute COVID-19, 791 (2.3% 
of all U09.9 patients, 24.2% of U09.9 patients hospital-
ized) had hospitalizations categorized as “severe,” with 
recorded use of a ventilator, extracorporeal membrane 
oxygenation (ECMO), or vasopressors. Also notable is 
the fact that 12,550 (37.2%) of the U09.9 patients did not 
have a COVID index date available in N3C’s records, sug-
gesting that these patients’ acute SARS-CoV-2 infection 
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was indicated by a test at home, at an external health care 
system, or at a testing site not connected to a health sys-
tem (e.g., drugstore, airport, workplace). Table  1 shows 
the breakdown of the study cohort by person-level demo-
graphics and area-level social determinants of health. 
An equivalent breakdown of all SARS-CoV-2 positive 
patients from the same 34 N3C sites is available as Addi-
tional file 1: Supplemental Table 1.

There are distinct trends among the area-level SDoH 
metrics. We used the g-test of independence to compare 
rates in area-level SDoH across all age groups between (1) 
the U09.9 cohort (reflected in Table 1, above) and (2) all 
SARS-CoV-2 positive patients at the same sites (shown 
in Additional file  1: Supplemental Table  1). Post hoc 
analysis showed that the U09.9 cohort had significantly 
lower representation in socially deprived areas than all 
SARS-CoV-2 positive patients. The U09.9 patient cohort 

had more patients in the "low" category for households 
with income below the poverty rate (29.6% vs. 26.3%; 
p-value < 0.01). The U09.9 cohort also had a higher per-
centage of patients in the "low" category for residents who 
are unemployed (19.2% vs. 16.1%; p-value < 0.01), and 
residents 19–64 with public health insurance (36.5% vs. 
31.5%; p-value < 0.01). Percentages in the “high” category 
for residents with a college degree were similar, though 
statistically significant (52.5% vs. 50.7%; p-value < 0.01). 
Additionally, compared with all SARS-CoV-2 posi-
tive patients at the same sites, the U09.9 cohort skewed 
toward female (66.9% vs. 55.6%; p-value < 0.01), White 
(71.8% vs. 61.1%; p-value < 0.01), non-Hispanic individu-
als (79.6% vs. 74.8%; p-value < 0.01).

We also analyzed the uptake of the U09.9 code itself, 
among sites using the code. There is a rapid increase 
in the use of U09.9 by sites following the code’s release 

Fig. 2  Age-stratified clusters of co-occurring diagnoses among patients with a U09.9 code. When the Louvain algorithm is applied to the top 30 
most frequent pairs of co-occurring diagnoses for U09.9 patients (i.e., diagnoses co-occurring in the same patient 0 through 60 days from U09.9 
diagnosis date), distinct clusters emerge. These clusters may represent rough subtypes of long COVID presentations, and differ among age groups. 
The size of each box within a cluster reflects the frequency of that diagnosis relative to others in the diagram. Condition names are derived from 
the SNOMED CT terminology, mapped from their ICD-10-CM equivalents. Similar clusters share the same color across all four diagrams. a U09.9 
patients < 21 years of age. b U09.9 patients 21–45 years of age. c U09.9 patients 46–65 years of age. d U09.9 patients 66 + years of age
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(Fig.  1). Usage of U09.9 post-release is compared with 
usage of B94.8 (“Sequelae of other specified infectious 
and parasitic diseases”); some sites used B94.8 at the 
Center for Disease Control’s (CDC) initial recommenda-
tion [32] as a placeholder code prior to U09.9’s release. 

Once U09.9 became available, it quickly supplanted 
B94.8. A visualization of the U09.9 uptake timeline by site 
is shown in Additional file 1: Supplemental Fig. 1.

The definition of long COVID [33] includes a wide-
ranging list of symptoms and clinical features. Many 

Table 1  Demographic breakdown of patients in N3C with a U09.9 diagnosis code. In addition to person-level demographics, we have 
included a number of social determinants of health variables at the area level (see the “Methods” section). In accordance with the 
N3C download policy, for demographics where small cell sizes (< 20 patients) could be derived from context, we have shifted the 
counts + / − by a random number between 1 and 5. The accompanying percentages reflect the shifted number. All shifted counts are 
labeled as such, e.g. + / − 5

Age < 21 21–45 46–65 66 + 
n = 2316 n = 11,364 n = 13,850 n = 6252

Person-level variables
Sex (%)
  Female 1319 (57.0) 8298 (73.0) + / − 5 9244 (66.7) 3760 (60.1)

  Male 997 (43.0) + / − 5 3066 (26.9) + / − 5 4606 (33.2) + / − 5 2492 (39.9)

  Unknown  < 20  < 20  < 20  < 20

Race (%)
  American Indian or Alaska Native  < 20 112 (1.0) 133 (1.0) 42 (0.7)

  Asian 57 (2.4) + / − 5 303 (2.7) 257 (1.9) 96 (1.5) + / − 5

  Black 349 (14.9) + / − 5 1703 (14.9) 1998 (14.4) + / − 5 621 (9.9) + / − 5

  Hawaiian/Pac Isldr  < 20 23 (0.2)  < 20  < 20

  White 1516 (65.0) + / − 5 7691 (67.7) 10,022 (72.3) + / − 5 5064 (80.8) + / − 5

  Other 66 (2.8) 62 (0.5) 52 (0.4) + / − 5  < 20

  Unknown 328 (14.2) 1469 (12.9) 1387 (10.0) 429 (6.9)

Ethnicity (%)
  Hispanic/Latino 363 (15.7) 1368 (12.0) 1332 (9.6) 335 (5.4)

  Not Hispanic/Latino 1687 (72.8) 8785 (77.3) 11,053 (79.8 5355 (85.7)

  Unknown 266 (11.5) 1211 (10.7) 1465 (10.6) 562 (9.0)

Area-level social determinants of health (ZIP-code level)
Households with income below poverty (%)
  High (> 15.30%) 604 (26.1) 3288 (28.9) 4098 (29.6) 1832 (29.3)

  Medium (7.92–15.30%) 691 (29.8) 3624 (31.9) 4295 (31.0) 2008 (32.1)

  Low (< 7.92%) 790 (34.1) 3265 (28.7) 4089 (29.5) 1888 (30.2)

  Missing 231(10.0) 1187 (10.4) 1368 (9.9) 524 (8.4)

Residents with college degree (%)
  High (> 17.54%) 1298 (56.0) 6169 (54.3) 6975 (50.4) 3309 (52.9)

  Medium (10.27–17.54%) 575 (24.8) 2812(24.7) 3742 (27.0) 1669 (26.7)

  Low (< 10.27%) 215 (9.3) 1197 (10.5 1765 (12.7) 751 (12.0)

  Missing 228 (9.8) 1186 (10.4) 1368 (9.9) 523 (8.4)

Residents 19–64 with public health insurance (%)
  High (> 22.50%) 442 (19.1) 2249 (19.8) 2959 (21.4) 1343 (21.5)

  Medium (12.99–22.50%) 734 (31.7) 3652 (32.1) 4607 (33.3) 2132 (34.1)

  Low (< 12.99%) 912 (39.4) 4275 (37.6) 4915 (35.5) 2253 (36.0)

  Missing 228 (9.8) 1188 (10.5) 1369 (9.9) 524 (8.4)

Residents 19–64 unemployed (%)
  High (> 5.7%) 555 (23.8) 2870 (25.3) 3789 (27.4) 1655 (26.5)

  Medium (3.1–5.7%) 1102 (47.6) 5132 (45.2) 6068 (43.8) 2812 (45.0)

  Low (< 3.1%) 431 (18.6) 2173 (19.1) 2624 (18.9) 1260 (20.2)

  Missing 228(9.8) 1189 (10.5) 1369 (9.9) 525 (8.4)
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of those features appear below in Fig. 2, a visualization 
of diagnoses that commonly co-occur with U09.9, and 
each other. As shown, the mix of co-occurring diag-
noses as well as the clusters produced by the Louvain 
algorithm change when the cohort is subset into age 
groups. A full accounting of diagnoses co-occurring 
with U09.9 (i.e., within the analysis window) in at least 
1% of our cohort is included as Additional file 1: Sup-
plemental Fig. 3.

Our findings suggest that long COVID symptoms and 
associated functional disability may present differently 

depending on the patient, but commonly fall into clus-
ters. Conditions within a single cluster are more likely to 
co-occur within a single patient than conditions appear-
ing in different clusters, allowing us to roughly subtype 
clinical presentations of long COVID. When stratified by 
age, the conditions within each cluster change somewhat, 
though the themes remain consistent.

N3C data also enables us to examine procedures and 
medications that occur in each patient’s analysis window, 
as shown in Fig.  3 and Additional file  1: Supplemental 
Fig. 3, respectively.

Fig. 3  Common procedures among patients with a U09.9 code. Procedures shown occur within 60 days after a patient’s U09.9 diagnosis. Procedure 
records that simply reflect that an encounter took place (e.g., CPT 99212, “Office or other outpatient visit”) are excluded. Category totals represent 
unique patient–procedure pairs, not necessarily unique individuals. Procedure classes associated with fewer than 20 patients or less than 1.0% of 
the age-stratified cohort size are not shown, per the N3C download policy. Percentages in each column are shown relative to the total n in that 
column
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Discussion
Diagnosis codes are frequently used as criteria to define 
patient populations. While diagnosis codes alone may 
not define a cohort with perfect accuracy, they are a use-
ful mechanism to narrow a population from “everyone in 
the EHR” to a cohort highly enriched with the condition 
of interest. Our analysis of U09.9 shows that this code 
may serve in a similar capacity to identify long COVID 
patients. However, temporality and rate of uptake by pro-
viders are critical issues that must be considered. U09.9 
was released for use nearly 2  years into the COVID-19 
pandemic, resulting in potentially millions of patients 
with long COVID who “missed out” on being assigned 
the code. Our findings must thus be interpreted through 
this lens of partial and incremental adoption. More work 
is needed to understand clinical variability and barriers 
to uptake by providers.

We investigated whether the use of non-specific cod-
ing such as B94.8 (“Sequelae of other specified infec-
tious and parasitic diseases”) could be used as a proxy 
for early case identification. Our findings show B94.8 
use increasing among COVID patients from April 2021 
to October 2021, indicating a potential shift in clinical 
practice patterns to code for long COVID presenta-
tion as guided by the Centers for Disease Control [32]. 
While B94.8 can be used for long COVID ascertainment 
in EHRs prior to October 2021, it should be noted that 
B94.8 is used to code for any sequelae of any infectious 
disease. For this reason, it may not be specific enough to 
rely on for highly precise long COVID case ascertain-
ment without applying additional logic (e.g., requiring 
a positive COVID test prior to B94.8). Even still, it is 
likely the most reliable structured variable in the EHR to 
identify potential long COVID patients prior to Octo-
ber 1, 2021.

Our diagnosis clusters suggest that long COVID is 
not a single phenotype, but rather a collection of sub-
phenotypes that may benefit from different diagnostics 
and treatments. Each of these clusters contains condi-
tions and symptoms reported in existing long COVID 
literature [34], clearly suggests that the definition of 
long COVID is more expansive than lingering respira-
tory symptoms [35], and illustrates that long COVID 
can manifest differently among patients in different age 
groups. Notably, among the conditions represented in 
our clusters, six have overlap with the eight conditions 
identified in another recent large-scale EHR analysis as 
high confidence for association with PASC, suggesting 
the particular importance of those conditions: anosmia/
dysgeusia, chronic fatigue syndrome, chest pain, pal-
pitations, shortness of breath, and type 2 diabetes [36]. 
Overall, the clusters can be summarized as neurological 

(in blue), cardiopulmonary (in green), gastrointestinal 
(in purple), upper respiratory (in yellow), and comor-
bid conditions (in red). The clustering for the youngest 
patients (< 21  years of age, Fig.  2a) is the most unique, 
with distinct upper respiratory and gastrointestinal 
clusters that are not seen in other age groups. Moreo-
ver, the neurological cluster for this group also includes 
multiple cardiopulmonary features (e.g., dyspnea, palpi-
tations). Patients aged 65 + (Fig. 2d) are also unique, in 
that they present with more chronic diseases associated 
with aging (e.g., congestive heart failure, atherosclerosis, 
atrial fibrillation) in addition to long COVID symptoms. 
The comorbid conditions cluster is unique in that it 
likely does not represent symptoms of long COVID, but 
rather a collection of comorbid conditions that increase 
in incidence as patients age. The impact of these comor-
bid conditions on risk and outcomes of long COVID 
requires further study.

Also noteworthy is the fact that the neurological clus-
ter appears more prominently in younger groups, espe-
cially patients 21–45  years of age. Of particular note 
is the appearance of myalgic encephalomyelitis (listed 
in Systematized Nomenclature of Medicine – Clinical 
Terms (SNOMED CT) as “chronic fatigue syndrome,” 
a non-preferred term)—a disease which parallels long 
COVID in many ways [37–39]—in the neurological clus-
ter across all age groups, suggesting not only frequent 
co-occurrence with a U09.9 diagnosis, but also co-occur-
rence with other neurological symptoms. The cluster dif-
ferences we see among age groups make a case for age 
stratification when studying U09.9, and long COVID in 
general. Regardless, given long COVID’s heterogeneity 
in presentation, course, and outcome, the clustering of 
symptoms may prove informative for future development 
of classification and diagnostic criteria [40].

The common procedures around the time of U09.9 
index provide insight into diagnostics and treatments 
currently used by providers for patients presenting 
with long COVID, for which treatment guidelines 
remain under development [41–44]. For new diseases 
where consensus is lacking, care is often ad hoc and 
informed by both the symptoms that patients present 
with and the available diagnostics and treatments 
that providers can offer. The identification and char-
acterization of care patterns is an important step in 
designing future research to assess the efficacy and 
outcomes of these interventions. Radiographic imag-
ing is a common occurrence across all age groups, 
with an average of 22.8% of patients with at least one 
imaging procedure in the analysis window. Electrocar-
diography (ECG) and echocardiography are also rela-
tively common across all age groups, though patients 
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younger than 21 years of age have the highest propor-
tion (20.0% and 13.2% for ECG and echo, respectively, 
compared with an average of 16.7% and 7.4% across the 
other age groups). Pulmonary function testing shows 
a slight increase in frequency with more advanced 
age. Also of interest is the fact that some patients are 
receiving rehabilitation services in the 60  days after 
diagnosis, such as physical and occupational therapy, 
which lends insight into the burden of functional dis-
ability for patients with long COVID. The proportion 
of patients receiving rehabilitation services also rises 
with patient age.

Differences across age groups were less apparent in 
the medication analysis (Additional file  1: Supplemen-
tal Fig. 2), though the youngest patients appear slightly 
more likely to be prescribed medications for gastroin-
testinal, cardiac, and neurological indications. Unsur-
prisingly, respiratory system drugs were also commonly 
prescribed across all age groups. Interestingly, antibac-
terials were used frequently across all age groups; it is 
unclear whether patients with long COVID are more 
susceptible to bacterial infections, or if there may be 
overuse of antibiotics in the setting of fluctuating res-
piratory long COVID symptoms or viral infections [45, 
46]. Corticosteroids were also commonly used, presum-
ably to treat persistent inflammation as a possible mech-
anism mediating long COVID symptoms. The variety 
of medication categories seen in our analysis reflect the 
potential multi-system organ involvement and symptom 
clusters in long COVID that we see in the analysis of 
conditions.

We also investigated how demographics and SDoH 
contribute to variation in diagnosis with U09.9. When 
evaluating the U09.9 cohort across age groups and 
SDoH variables, distinct trends can be observed (see 
Table 1). Patients with a U09.9 diagnosis code are more 
likely to live in areas with low percentages of residents 
who are unemployed or on public health insurance. 
Patients living in counties with a high level of poverty 
make up the smallest share of the U09.9 cohort. In 
contrast, research shows that socially deprived areas 
have higher rates of COVID-19 cases and deaths [47, 
48]. Given the higher rates of COVID-19, lower rates of 
long COVID seem unlikely. Rather, patients in deprived 
areas may be less likely to receive a U09.9 code in a 
healthcare setting, which may have downstream impli-
cations for their later identification as a long COVID 
patient. Moreover, a large majority of the U09.9 cohort 
identifies as female, White, and non-Hispanic com-
pared to all SARS-CoV-2 positive patients at the same 
sites. These trends are unlikely to be an accurate reflec-
tion of the true population with long COVID, but may 

instead illustrate racial and social disparities in access 
to and experience with healthcare in the USA. Clearly, 
the role of access to providers and the economic means 
to afford long COVID care should continue to be stud-
ied for their role as contributors to disparate care and 
outcomes, as well as sources of research and algorith-
mic bias.

Limitations
All EHR data is limited in that patients with lower access 
or barriers to care are less likely to be represented. More-
over, missing race and ethnicity data is likely not missing 
at random [49], and the inclusion of patients with missing 
race and/or ethnicity data in this analysis may bias inter-
pretation of our demographic findings. EHR heterogene-
ity across sites may mean that a U09.9 code at one site 
does not quite equate to a U09.9 code at another. Moreo-
ver, we are not able to know what type of provider issued 
the U09.9 diagnosis (i.e., specialty), and different clinical 
organizations have different coding practices.

As the U09.9 code is still quite new and our sample 
size is limited, we cannot yet confidently label these 
clusters as clear “long COVID subtypes.” Rather, these 
clusters are intended to be hypothesis generating, with 
additional work underway by the RECOVER consor-
tium to further develop and validate these clusters. 
It should also be noted that many symptoms are not 
coded in the EHR (and may, for example, be more likely 
to appear in free-text notes rather than diagnosis code 
lists). Future work will incorporate these non-struc-
tured sources of symptoms for use in our clustering 
methodology. The newness of the code should also be 
taken into account when interpreting any of our find-
ings. The CDC has created guidance for use of the code 
[50]; however, despite this, as noted by an attendee 
at the CDC’s March 2021 Q&A session that covered 
U09.9, “physicians don’t speak coding” [51]. Thus, there 
is likely to be a disconnect between CDC’s intended use 
of the code and its actual application in practice, in both 
the billing and clinical contexts. Ioannou et  al. echoed 
this in a recent paper, noting great variability in the 
documentation of long COVID across regions, medical 
centers, and populations [52]. We are unlikely to know 
the extent of this disconnect until U09.9 has been in 
use for a longer period of time; however, it should be 
assumed that some number of the patients that receive 
a U09.9 code may indeed be “false positives.” In future 
work, chart reviews of U09.9 patients will shed light on 
this issue.

Given the variable uptake of the U09.9 code, it is chal-
lenging to accurately identify comparator groups for 
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this population—i.e., the absence of a U09.9 code can-
not, at this time, be interpreted as the absence of long 
COVID. Relying solely on U09.9 to identify a complete 
long COVID cohort will undoubtedly miss many valid 
cases that are simply “unlabeled.” This will continue to 
be an issue in future research, especially when evaluating 
the effect of PASC on patient morbidity and utilization 
of diagnostic testing and treatments.

Conclusions
The recent release of ICD-10-CM code U09.9 to codify 
long COVID will undoubtedly assist with future case 
ascertainment and computable phenotyping. However, 
a large number of patients who developed long COVID 
prior to October 1, 2021, continue to be burdened with 
symptoms, and must also be included in data-driven 
cohort identification efforts for trial recruitment and 
retrospective analyses. Considering the caveats around 
the rate of uptake among clinicians and late timing of the 
code’s release, we recommend that when characteriz-
ing long COVID using EHRs, U09.9 should not be used 
alone, but rather in combination with other strategies 
such as more complex computable phenotypes [53]. Our 
findings from the characterization of patients with the 
U09.9 diagnosis may be of use in refining phenotypes to 
identify pre-U09.9 patients that might have long COVID. 
There is a clear utility to the characterization of early use 
of U09.9, as it represents the first “hook” in EHR data 
that can be used to identify and assess current diagnos-
tic and treatment patterns at scale. Moreover, given the 
heterogeneous presentation of long COVID, clustering 
of co-existing conditions and potential symptoms may 
be valuable in informing future development of more 
detailed criteria for the diagnosis of long COVID and its 
subtypes.
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