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Abstract 

Background:  For over a century, scientists have studied host-pathogen interactions between the crayfish plague dis-
ease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts 
are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent 
infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary 
processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen 
interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the 
molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution 
is shaping the host’s molecular response to the pathogen, susceptible native European noble crayfish and invasive 
disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain 
(introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, 
USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of 
crayfish immunity and metabolism.

Results:  We characterised several novel innate immune-related gene groups in both crayfish species. Across all 
challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the 
marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to 
the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A 
strain, but not to the haplogroup B strain.

Conclusions:  We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the 
response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble 
crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. 
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Background
Host-pathogen interactions are models for evolutionary 
arms-races, thus cycles of reciprocal co-adaptation [1]. 
Coevolution between hosts and pathogens is ubiquitous, 
often resulting in rapid evolutionary change, and is linked 
to the maintenance of diversity [2, 3]. Pathogens impose 
strong selection on their hosts which try to minimize 
their fitness loss, e.g. by evolving resistance, while patho-
gens themselves are under strong selection to undermine 
host defences without causing the complete collapse of 
the host population [4]. Parasite virulence may peak after 
a host-jump, as the new host has not yet evolved any 
specific defence mechanisms [4, 5]. The theory behind 
host-parasite interactions is well established [6, 7], and 
there are ample examples for coevolutionary adaptations 
[8, 9]. However, we are only just starting to understand 
the underlying genomic mechanisms and genes involved 
in co-adaptation processes [10]. Host-pathogen interac-
tions are of high interest in conservation biology, as they 
not only determine the fate of invasive species, but they 
also affect the survival of native taxa [11]. Due to its high 
importance for aquaculture and management, scientists 
have studied the interaction between freshwater crayfish 
and their pathogen Aphanomyces astaci for over a cen-
tury [12]. Still, the coevolutionary aspect of this host-
pathogen interaction remains understudied.

Likely because of their coevolutionary history, North 
American crayfish species are generally considered 
resistant to the pathogen A. astaci, the causative agent of 
crayfish plague disease [13, 14]. It is assumed that these 
crayfish species are natural carriers of their specific A. 
astaci strain, usually efficiently preventing it from spread-
ing inside their tissues through melanisation mediated 
encapsulation of the pathogen hyphae in the cuticle [15, 
16]. In contrast, European crayfish species do not natu-
rally carry the pathogen and are considered susceptible to 
the disease [17–19]. Therefore, the introduction of inva-
sive North American crayfish species into Europe, and 
with them of A. astaci, caused mass mortalities and local 
extinctions among European crayfish populations [20]. 
The A. astaci strains present in Europe can be grouped 
into 4 different haplogroups [21]. Haplogroup A contains 
strains of unequal virulence (ranging from non-virulent 
to highly virulent), while haplogroups B, D and E are usu-
ally characterized by high virulence [17, 22, 23]. Despite 
the high susceptibility of native European crayfish species 

towards the crayfish plague disease agent, latent crayfish 
plague infections without mass mortalities have been 
reported for several species infected with low virulent 
A. astaci strains of haplogroup A [12], suggesting the 
presence of an ongoing dynamic coevolutionary pro-
cess. However, the foundation of this naturally occurring 
resistance to A. astaci remains unclear.

Initial studies suggested that one of the main factors 
contributing to the resistance of North American cray-
fish species is the constitutively over-expressed proph-
enoloxidase (proPO) in the haemocytes, a key enzyme 
in the encapsulation of pathogens in melanin [24]. Con-
versely, in European crayfish species, the expression of 
this enzyme is dependent on stimuli of the pathogen [24]. 
Based on the current knowledge of the innate immunity 
mechanisms in crustaceans, the response to pathogens 
comprises both cellular and humoral components, with 
the proPO cascade playing part in the humoral response 
[25–27]. The immune response is triggered by the path-
ogen-associated molecular patterns (PAMPs), such as 
β-(1,3)-glucan, which is one of the main constituents of 
the oomycetes cell wall [28]. These molecules are recog-
nised by specific pattern-recognition proteins (PRPs) of 
the host, which can exist as soluble molecules or as asso-
ciated with cell membranes. PRPs of particular relevance 
are lectin-like proteins, Down Syndrome Cell Adhesion 
Molecules (DSCAMs) and Toll-like receptors (TLRs) [25, 
29]. The interaction between ligands and receptors leads 
to the activation of different molecular pathways involved 
in the humoral or cellular response, all of them coordi-
nated by the core mediators of the crustacean immunity, 
the haemocytes. Haemocytes are crucial for the pro-
cesses of phagocytosis, encapsulation and melanisation, 
and they are involved in delivering the molecular effec-
tors of the humoral response, such as antimicrobial pep-
tides and proPO, to the infection sites [27, 30, 31].

The mechanisms underlying the crayfish immune 
response to A. astaci, however, is much more complex 
than the simple activation of the proPO cascade, but its 
molecular effectors and other tissues beyond haemo-
lymph have not received much attention. In Crustaceans, 
hepatopancreas represents an integrated organ of immu-
nity and metabolism [32, 33]. It plays a major role in 
pathogen clearance, antigen processing [34, 35], detoxi-
fication, and heavy metal deposition [36]. It also serves 
as a source for immune molecules, which can be released 

With this study we outline that the type and strength of the host immune response to the pathogen is strongly influ-
enced by the coevolutionary history of the crayfish with specific A. astaci strains.
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from the epithelial cells into the haemocoel sinusoids, 
allowing for their rapid distribution in the haemolymph 
of the crayfish [33]. In recent years, the involvement 
of the hepatopancreas in the response to various dis-
ease and environmental factors has been highlighted in 
crustaceans [36–40]. However, its role in the immune 
response to A. astaci infection has not been clearly 
defined.

Through the coevolutionary transcriptomics approach, 
we aimed to deepen our understanding of the molecular 
mechanisms underlying the resistance and susceptibil-
ity of freshwater crayfish to the A. astaci, to unravel how 
coevolution is shaping the molecular response to the 
pathogen. By analysing gene expression profiles in the 
hepatopancreas, we compared the immune response of 
the susceptible native European noble crayfish (Astacus 
astacus) and the resistant invasive marbled crayfish (Pro-
cambarus virginalis) to an A. astaci challenge. In a con-
trolled infection experiment, both species were infected 
with a highly virulent (haplogroup B, hereinafter Hap 
B) and a lowly virulent (haplogroup A, hereinafter Hap 
A) A. astaci strain [41]. Previous studies focused on the 
early stages of the A. astaci infection, but the transition 
from acute infection to latent infection states has not 
been studied. Therefore, the hepatopancreas of the cray-
fish was sampled during the early phase of challenge (day 
3) and late phase of the challenge (day 21).

We hypothesised that the hepatopancreas is a highly 
relevant tissue in the immune response towards A. astaci 
infections, and we expected to detect several immune-
related transcripts in all treatment groups. We expected 
that the gene expression profiles of the immune-related 
transcripts differ between the noble crayfish and the 
marbled crayfish, reflecting the species’ different coevo-
lutionary history with the specific A. astaci strain, and 
thus their different abilities to defend against the patho-
gen. Furthermore, for the susceptible noble crayfish, we 
expected a stronger immune response in noble crayfish 
challenged with the highly virulent Hap B strain com-
pared to the less virulent Hap A strain. Conversely, we 
did not expect any gene expression difference among 
treatment groups for the resistant marbled crayfish. 
Lastly, we expected the latently infected crayfish to show 
a chronic immune response against A. astaci, with the 
presence of differentially expressed immune-related tran-
scripts 21 days post-challenge.

The results presented in this paper deliver novel 
insights into the gene repertoire involved in the immune 
response to the A. astaci challenge, deepening our under-
standing of freshwater crayfish immunity and their inter-
action with the pathogen, A. astaci.

Results and discussion
Immune‑related transcripts in the hepatopancreas, 
the mediator of the crayfish immune response to A. astaci 
challenge
Genomic research on non-model organisms is faced 
by the challenge of annotating large sets of genes from 
unknown origin. This challenge is particularly evident 
in Crustaceans [42, 43], which are still largely underrep-
resented in genomic studies. To date, only 48 out of 727 
genome assemblies representing Pancrustacea belong to 
Crustaceans (with the remaining 679 genomes belonging 
to Hexapoda) (Genomes-NCBI Datasets, accessed: April 
2021). Furthermore, the canonical proPO pathway, con-
sidered a core immune response mechanism in the Crus-
taceans [44], is not represented in the KEGG database. 
Therefore, we conducted the annotation of the innate 
immunity related genes in the noble crayfish and the 
marbled crayfish hepatopancreas transcriptomes using a 
sequence and domain similarity-based approach. A total 
of 372 and 353 innate immune-related genes were identi-
fied through this approach in the noble crayfish and the 
marbled crayfish, respectively (Fig. 1, Table S2, Table S3, 
File S2, File S3).

The identification of these innate immune-related genes 
provides a basis for future transcriptomic and genomic 
studies of the innate immunity in freshwater crayfish spe-
cies. For example, we successfully identified members 
of the immune signalling Toll pathway. This pathway is 
conserved in most members of Malacostraca [45] and its 
activation is critical for antimicrobial peptides (AMPs) 
expression in Hexapoda [46, 47]. In the noble crayfish 
and the marbled crayfish, we identified most of the Toll 
pathway-related genes as single copy (Fig.  1). Recently, 
an extensive overview of innate immune-related genes 
has been conducted on numerous marine and freshwater 
Decapods [45]. The number of TLRs identified in those 
species ranged between 0 and 8, collocating the num-
ber of TLRs found in this study slightly above the higher 
value (11 in the noble crayfish and 8 in the marbled cray-
fish). Lastly, in the noble crayfish TOLLIP, Spätzle and 
Tube were detected in multiple copies (Fig. 1).

The innate immune system in freshwater crayfish is 
armed with an arsenal of PRRs capable of recognising 
various PAMPs [48]. The β-(1,3)-glucan receptors (often 
referred to as Gram-negative binding proteins (GNBPs) 
or lipopolysaccharide binding proteins) play a vital role 
in the proPO cascade activation [49]. All GNBPs share 
a carbohydrate-binding β-glucanase domain as identi-
fied in this study [45]. The expansion of this family was 
previously reported in Decapoda [45], and confirmed in 
this study with 9 GNBPs identified in the noble crayfish 
and 8 in the marbled crayfish (Fig. 1). Immune molecules 
and pathways involved in the response to the A. astaci 
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Fig. 1  Genes involved in the representative immune related pathways, identified thought the similarity-based approach in (a) the noble crayfish 
and (b) the marbled crayfish. For all genes abbreviations are available in the Table S7
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challenge are discussed in detail in the section Molecu-
lar mechanisms of the immune response to the A. astaci 
challenge.

Gene expression profiles of A. astaci challenged crayfish
Exploratory analysis of the mapping results
Mean mapping rate of the processed reads for the noble 
crayfish was 88.96% and for the marbled crayfish 91.98% 
(Table S4). This was followed by the principal component 
analysis (PCA), performed to compare the replicates of 
the A. astaci challenged crayfish with the control group. 
The initial results of the PCA revealed a batch effect in 
the noble crayfish and the marbled crayfish samples 
(Fig. S1). For the noble crayfish this effect was related 
to the differences between male and female individuals, 
accounting for 21% of the variance. For the marbled cray-
fish, the highest level of variance (63%) was caused by the 
differences between reproducing and non-reproducing 
parthenogenetic females (see Francesconi et al. [41], for 
details). Therefore, in the down-stream differential gene 
expression analysis, we accounted for the sex of the noble 
crayfish, as well as the reproductive status of the mar-
bled crayfish, by including them as factors in the DESeq2 
analysis. After batch effect removal, the PCA analysis 
revealed the grouping only for the A. astaci Hap B chal-
lenged noble crayfish, while such grouping was revealed 
neither for other noble crayfish samples nor for the mar-
bled crayfish (Fig. S1).

Differentially expressed genes
In the differential gene expression analysis, 35,300 genes 
for the noble crayfish and 52,491 genes for the marbled 
crayfish were analysed after removing the genes with 
low gene counts. In the noble crayfish, a total of 380 
DEGs (202 up-regulated and 178 down-regulated) were 
detected in response to the challenge with A. astaci 
across all treatments (Fig. 2, Table S5). The highest num-
ber of DEGs was observed in the Hap B challenged noble 
crayfish 3 days post-challenge, with 243 DEGs (141 up-
regulated and 102 down-regulated) (Fig.  2), with many 
involved in the immune response (Fig.  3). The lowest 
amount of DEGs was observed in the Hap A challenged 
noble crayfish 3 days post-challenge, with only 14 DEGs 
(7 up-regulated and 7 down-regulated) (Fig. 2). The DEGs 
relevant to the innate immunity, mainly connected to the 
proPO cascade, were observed in the Hap B challenged 
noble crayfish 3 days post-challenge (Fig. 2). In the mar-
bled crayfish a total of 232 DEGs (102 up-regulated and 
130 down-regulated) were detected in the response to 
the challenge with A. astaci across all treatments (Fig. 2, 
Table S6). The highest number of the DEGs related to the 
innate immunity was observed in the Hap A challenged 

marbled crayfish 3 days post-challenge, with 79 DEGs (47 
up-regulated and 32 down-regulated), and the highest 
overall number of the DEGs in the marbled crayfish was 
observed 21 days post-challenge with the Hap B strain, 
with 107 DEGs (40 up-regulated and 67 down-regulated). 
The lowest amount of the DEGs was observed in the Hap 
B challenged marbled crayfish 3 days post-challenge, with 
only 15 DEGs, all down-regulated (Fig. 2, Table S6).

Our results indicate the absence of a chronic or a long-
term immune response to the challenge with A. astaci 
in both species. The lack of the clear immune response 
signal 21 days post-challenge suggests that the active 
immune response in the hepatopancreas had already 
come to a halt, or was capped below the detection level 
of the differential gene expression analysis at the time of 
the second sampling (Enriched gene sets in the response 
to the A. astaci challenge). However, a chronic response 
could be mediated, as previously suggested in other stud-
ies, by circulating haemocytes in the haemolymph of 
latently infected crayfish [50]. Future studies focused on 
comparing the gene expression patterns among multiple 
immune-relevant tissues in the crayfish might clarify this 
aspect.

Enriched gene sets in the response to the A. astaci challenge
As a complementary approach to the differential gene 
expression analysis, we utilised the newly identified 
immune-related genes (Immune-related transcripts in 
the hepatopancreas, the mediator of the crayfish immune 
response to A. astaci challenge) to conduct a gene set 
enrichment analysis. This approach allowed us to detect 
moderate or minor changes in the gene expression data 
[51]. For the noble crayfish, our results revealed the 
enrichment of AMP, proPO pathway and novel (encom-
passing novel genes identified in this study) gene sets in 
the Hap B challenged group (Fig. 4) and recognition gene 
set in the Hap A challenged group 21 days post-challenge 
(Fig. S2). The proPO pathway gene set was under-rep-
resented in the Hap A challenged noble crayfish 3 days 
post-challenge. In the marbled crayfish, AMP, proPO and 
recognition gene sets were enriched for the Hap B chal-
lenged group at both sampling points (Fig. S2). Further-
more, in the Hap A challenged group, recognition and 
proPO gene sets were enriched (Fig.  4). In the marbled 
crayfish, 21 days post-challenge with Hap A we detected 
no enriched gene sets. These results, in line with the dif-
ferential gene expression analysis, suggest that proPO 
pathway, AMPs and recognition proteins, although not 
detected as differentially expressed, play a major role in 
the response to the A. astaci challenge. Their interplay 
and significance are discussed in the text further down.



Page 6 of 21Boštjančić et al. BMC Genomics          (2022) 23:600 

Molecular mechanisms of the immune response to the A. 
astaci challenge
Activation of prophenoloxidase cascade
Although in both crayfish species the proPO pathway 
was activated, we detected a substantial difference in the 
immune response in the two species in the mobilisation 
of different effector groups and number. The activation 
of proPO cascade is the most explored humoral response 
among crustaceans (Fig. 4) [49, 52]. Phenoloxidase (PO), 

synthesized in its zymogen/inactive form (proPO), is the 
central enzyme of the pathway. It is cleaved by its activat-
ing serine protease (ppA) into the catalytically active PO 
and the 20 kDA N-terminal fragment (ppA-proPO) with 
a strong agglutination and bacterial killing capacity [53]. 
Activated PO is involved in the conversion of phenolic 
substances into the toxic quinone intermediates involved 
in the production of melanin, the terminal pathogen 
encapsulating agent of the proPO cascade [50]. Alongside 

Fig. 2  Results of the differential gene expression analysis. (a) Venn diagram representing DEGs for all treatments in the noble crayfish (b) Venn 
diagram representing differentially expressed DEGs for all treatments in the marbled crayfish. Volcano plots for the noble crayfish and marbled 
crayfish. (c) 3 days post-challenge with haplotype A, (d) 3 days post-challenge with haplotype B. The threshold values are represented as dashed 
lines (p-value = 0.05, Fold change = 2). Genes above fold change and p-value threshold are coloured red
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Fig. 3  Heatmap of the immunity genes for each sample and treatment detected as differentially expressed in the noble crayfish (a) Raw counts 
were transformed to transcripts per million (TPM), followed by standardisation with Z-score scaling (where Z score is calculated as follows: Z = si-μ/σ 
where si is the gene expression for a sample in TPM, μ is mean of the expression for each gene in TPM and σ is standard deviation of the expression 
for each gene in TPM). Therefore, the colours in the heatmap reflect the relative expression levels between samples per each gene, with higher 
expression in red and lower expression in blue. Hap A, haplogroup A; Hap B, haplogroup B, I and II, first and second sampling point, respectively 
(3 days and 21 days post-challenge), 1–5, identifying number of the crayfish (b) gene expression of the prophenoloxidase (proPO), CCAAT/
enhancer-binding protein beta (EBP), and Krueppel like protein (KLP) in the marbled crayfish and the noble crayfish challenged with A. astaci. 
Expression values are shown in TPM
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PO, ppA activates the formation of peroxinectin (PXN), 
involved in opsonisation, cell adhesion and encapsulation 
[54, 55]. It was previously assumed, that only the mature 
haemocytes (granular and semigranular), which are 

responsible for the release of the proPO in the response 
to the pathogen stimulation [44, 52], are characterised 
by the onset of proPO expression [26]. Our results sug-
gest that, alongside haemocytes, hepatopancreas is also 

Fig. 4  Pathways involved in the freshwater crayfish immune response to A. astaci immune challenge, (a) Schematic representation of the crayfish 
immune response to A. astaci challenge (b) Results of the gene set enrichment analysis for the noble crayfish challenged with Hap B strain of A. 
astaci (Day 3), (c) results of the gene set enrichment analysis for the marbled crayfish challenged with Hap A strain of A. astaci (Day 3)
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involved in the production of the central proteins of this 
pathway (Fig. 3).

In our study we observed an up-regulation of proPO, 
ppA and peroxinectin in the hepatopancreas of the Hap 
B challenged noble crayfish (Fig.  3a, Fig.  5), while in 
the marbled crayfish these genes were not differentially 
expressed in any treatment group. Nonetheless, our find-
ings indicate that the expression of proPO in the hepato-
pancreas of both susceptible and resistant crayfish can be 
altered in response to  the pathogen stimulation (Fig. 3). 
In fact, while proPO was not differentially expressed in 
the marbled crayfish, the variances in the proPO expres-
sion levels (transcripts per million, TPM) were much 
higher in the marbled crayfish challenged with Hap A 
of A. astaci 3 days post-challenge and Hap B of A. astaci 
3- and 21- days post-challenge, compared to the noble 
crayfish challenged with Hap B of A. astaci (Fig. 3). The 
results of the GSEA of both treatment groups of the mar-
bled crayfish confirm the activation of the proPO path-
way (Fig. 4, Fig. S2). Previous studies detected significant 
differences between the expression levels of the  proPO 
in the haemocytes of both  A. astaci -susceptible and 
-resistant crayfish [24]. Specifically, it was observed that 
the expression of proPO is continuously elevated in the 
invasive resistant signal crayfish and the expression lev-
els do not change in response to immune stimuli, while 
in the susceptible noble crayfish proPO is constitutively 
expressed at lower levels and its expression levels depend 

on the presence of the pathogen. The results of our study 
pointing to a modulation of the expression of proPO in 
response to the pathogen in the resistant marbled cray-
fish indicate that the basal expression levels and dynamic 
of activation of the proPO in the hepatopancreas and the 
haemocytes are likely different.

Our results indicate that in the Hap B challenged noble 
crayfish, several serine proteinases (Clip SPs) and serine 
proteinase inhibitors (serpins) were up-regulated in the 
response to the infection (Fig. 3, Table S5), and pacifas-
tin-HC gene was up-regulated in the Hap A challenged 
marbled crayfish 3 days post-challenge (Fig. 5, Table S6). 
These genes are responsible for the spatial and the tem-
poral control of the proPO cascade (Fig.  4) [50]. Exces-
sive activation of the proPO pathway can cause damage 
to the host due to the production and the release of 
toxic quinones, therefore such inhibitory proteins are of 
utmost importance. In particular, the proteins involved in 
the proPO regulation are: pacifastin, a regulatory inhibi-
tor of ppA [56]; melanisation inhibition protein (MIP) 
[57]; caspase 1-like molecule (CPC-1-like), released con-
comitantly with the proPO and limits the proteolysis of 
proPO; and mannose-binding lectins [53]. Serpins were 
reported to play a role in the proPO cascade inhibition 
[58]. The recognition of the oomycete β-(1,3)-glucan 
activates the Clip SP cascade responsible for cleavage 
of the ppA [44]. The up-regulated serpins could also be 
involved in the inhibition of the oomycete proteinases 

Fig. 5  Graphical summary of the experimental results. The noble crayfish and the marbled crayfish were both exposed to two strains of the 
pathogen A. astaci, Hap B of high virulence and Hap A of low virulence. Both species showed immune response to A. astaci, although only for one 
strain. The immune system of the noble crayfish was activated in response to Hap B strain, while the immune system of the marbled crayfish was 
activated in response to Hap A strain. The utilised Hap A strain has coexisted with European noble crayfish for the past 70 years, and our results 
indicate that in that time frame it adapted to its new host. On the other hand, the Hap B strain, isolated from its original host in Lake Tahoe, shows a 
high adaptation to the invasive North American crayfish. Differentially expressed genes (DEGs) were divided in 4 groups: prophenoloxidase cascade 
related (ProPO), antimicrobial peptides (AMPs), pathogen recognition receptors (PRR) and Other. Enriched gene sets (based on the GSEA) were 
highlighted. Please refer to abbreviations for the full names of DEGs
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[59]. Thus, serpins exhibit a dual role as an anti-oomycete 
agent and as the protectors against the proPO cascade 
overactivation [33, 60]. This is further supported by the 
high number of genes encoding for the putative Clip SP 
(37 in the noble crayfish and 38 in the marbled crayfish) 
and their inhibitor serpins (19 in the noble crayfish and 
24 in the marbled crayfish). The expansion of the Clip SP 
in Malacostraca (compared to the other Pancrustacea) 
was previously observed by Lai and Aboobaker [45] with 
the highest number of the  Clip SP (72) observed in the 
whiteleg shrimp. Co-expression of the proPO cascade 
effectors and of the proPO inhibitors in the hepatopan-
creas of the Hap B infected noble crayfish and of the Hap 
A infected marbled crayfish indicates that the proPO cas-
cade is highly involved in the response to the A. astaci 
challenge. Different elements of the proPO pathway seem 
to be activated in the marbled crayfish compared to the 
noble crayfish. Unfortunately, it is not possible to distin-
guish if this is due to real differences in the expression 
of the molecules involved in the proPO pathway of the 
two species, or if it is due to the high individual variance 
of the responses in the marbled crayfish. Although only 
one gene was annotated as the putative proPO, multi-
ple hemocyanin (HCY) domain containing genes (14 in 
the  noble crayfish and 20 in the  marbled crayfish) were 
uncovered in both species (Fig.  1). HCY is evolutionar-
ily closely related, but distinct to  the proPO [61]. It is 
believed that Crustacean HCYs can, to a certain extent, 
mimic the proPO functions [44]. Crustacean HCY is a 
large type-3 copper containing respiratory protein which 
forms hexameric structures responsible for oxygen trans-
port [62]. Alongside proPO, in the Hap B challenged 
noble crayfish, one of the HCY containing proteins 
was observed as up-regulated (Fig.  3, Table S5). In the 
marbled crayfish challenged with the Hap A, a highly 
expressed HCY containing protein was also observed 
as up-regulated in the hepatopancreas 3 days post-chal-
lenge (Fig.  5, Table S6). Unlike vertebrate hemoglobins, 
HCYs are cell-independent, and are solely suspended 
in the crayfish haemolymph [62]. This means that the 
HCYs can be directly excreted from the hepatopancreas, 
where they are synthesised, to the crayfish haemolymph, 
without damage to the organism [63, 64]. On the other 
hand, proPO must be transported to the infection site 
and incorporated in the granules of semi-granular and 
granular haemocytes (blood cells) [24, 50]. Shortly after 
the immune challenge, a significant drop in the number 
of circulating haemocytes (condition termed haemocy-
topenia) is observed due to haemocyte mobilisation to 
the infection site [31, 65]. These haemocytes are mainly 
directly replaced during haematopoiesis from the hemat-
opoietic tissues [28]. This usually occurs 12–48 hours 
after the initial challenge [27, 65]. Therefore, during the 

period of circulating haemocyte depletion, both sensitive 
and resistant crayfish can rely on the components of the 
humoral innate immune response, such as antimicrobial 
peptides and HCYs, until the haemocyte replenishment. 
This is concordant with the observation by Decker et al., 
[62] suggesting the innate immunity involvement of the 
high concentration of HCYs in the circulating haemo-
lymph in tarantula [66]. Finally, HCYs can be proteolyti-
cally processed, resulting in a release of AMPs, such as 
those belonging to the astacidin family [67].

Expression of pattern recognition receptors (PRRs)
We observed two up-regulated putative C-type lectins 
(CTLs) in the marbled crayfish, one in the A. astaci Hap 
A challenged group 3 days post-challenge and one in the 
A. astaci Hap B challenged group 21 days post-challenge 
(Fig. 5, Table S5). Lectins are a diverse group of proteins 
capable of binding carbohydrate-binding domains with 
high specificity [68]. In crustaceans, lectin recognition 
leads to downstream activation of cellular and humoral 
responses such as agglutination [69], endocytosis [70], 
encapsulation and nodule formation [71], synthesis of 
AMPs [72], antiviral activities [73], and melanisation 
through the proPO cascade activation [74]. We have 
identified 55 putative CTLs in the noble crayfish and 43 
putative CTLs in the marbled crayfish (Fig.  1). Among 
PRRs, CTLs have a major role in the innate immunity of 
freshwater crayfish, where they have also experienced a 
major increase in their diversity [45].

Among the differentially expressed genes involved 
in pattern recognition we observed an up-regulated 
DSCAM 3 days post-challenge in the marbled crayfish 
challenged with A. astaci Hap A (Table S6). DSCAM 
is a member of the immunoglobulin (Ig) superfamily, 
with a similar structure in both mammalians and inver-
tebrates. The DSCAM molecule consists of three main 
components, an extracellular region with several Ig and 
fibronectin type III domains, a transmembrane domain, 
and a cytoplasmic tail. Unlike its mammalian counter-
part, invertebrate DSCAM exhibits hypervariability in 
the extracellular domains achieved through a mechanism 
of alternative splicing during mRNA maturation [75, 76]. 
In total, we identified 12 putative DSCAM-encoding 
genes in the noble crayfish and 6 in the marbled cray-
fish (Fig. 1). DSCAM molecules have been shown to be 
involved in the antiviral [77] and antibacterial response, 
mainly in the opsonisation [49]. It is worth noting that 
due to their hypervariable domain, DSCAMs are consid-
ered likely key molecules for the immunological memory 
in crustaceans [29]. Both CTLs and DSCAMs can exist in 
a membrane bound and secreted form [78, 79]. Therefore, 
CTLs and DSCAMs expressed in the hepatopancreas of 
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crayfish can probably be excreted directly to the haemo-
lymph upon the immune challenge, acting as a part of the 
humoral immune response mechanisms to the pathogen 
infection.

Alongside the  DSCAM we observed another immu-
noglobulin/fibronectin (Ig/Fn) domain containing pro-
tein up-regulated 3 days post-challenge in the marbled 
crayfish challenged with A. astaci Hap A (Table S6). This 
protein shared 27% identity with the fruit fly (Drosophila 
melanogaster) protein amalgam (Ama, NCBI acc. No.: 
P15364.2). This amalgam-like protein was 510 amino acid 
(aa) long, with a molecular weight of 55.63 kDa. It con-
tained 1–21 aa signal peptide domain, three Ig domains 
(67–158 aa, 166–254 aa, 257–345 aa), and a Fn domain 
(347–453 aa) with a cytokine receptor motive (439–443 
aa). In total, we identified 2 Ig/Fn domain containing pro-
teins with this domain organisation in the noble crayfish 
and 4 in the marbled crayfish (Fig. 1). The presence of the 
C-terminal Fn domain clearly distinguishes this protein 
form the fruit fly Ama [80]. Nonetheless, we can hypoth-
esise that this protein could share the secreted nature of 
Ama, and its cell adhesion properties [81], potentially 
having a role in opsonisation, and immune response 
mediation through its cytokine receptor motive located 
in the fibronectin domain.

Among the up-regulated DEGs in the Hap B challenged 
noble crayfish, we identified a pentraxin domain contain-
ing gene (Table S5, Pfam: PF00354). The protein product 
of this gene is 254 aa long (27.95 kDa), with a signal pep-
tide (1–21 aa) on the N-terminus and only 55.5% iden-
tity with the neuronal pentraxin receptor-like isoform X2 
from the whiteleg shrimp (XP_027224174.1, identified 
with Blastx). Like the most-well studied pentraxins (e.g. 
C-reactive protein (CRP) or serum-amyloid P component 
(SAP)), this pentraxin, due to its size, probably belongs to 
the group of short pentraxins [82]. We identified 11 puta-
tive pentraxin genes in the noble crayfish and 17 in the 
marbled crayfish (Fig. 1). Pentraxins (or pentaxins) repre-
sent a multifunctional and evolutionary conserved group 
of proteins, with a critical role in the humoral innate 
immune response [83]. They can recognise a wide range 
of the pathogen associated molecular patterns, and serve 
as opsonin, cytotoxic effectors, agglutination promotors 
or as activators of the complement [82, 84, 85]. Not much 
is known about the complex system of the complement in 
the freshwater crayfish and previously hypothesised pen-
traxin complement activation is most likely not mediated 
through the C3 component of the complement [84], as it 
is in vertebrates [85] since C3-like proteins have report-
edly been lost in Pancrustacea [45].

In endothermic animals the source of pentraxins is the 
liver [86] and in the horseshoe crab (Limulus polyphe-
mus) and American lobster (Homarus americanus) these 

proteins are produced in hepatopancreas [87, 88]. From 
there they are released to the haemolymph. Pentraxins 
are classical acute phase proteins. In humans, the  CRP 
can be utilised as a marker of bacterial and fungal dis-
eases progression [84]. To  best of our knowledge, this 
is the first time a pentraxin-domain containing protein 
is identified in  the crayfish in the response to A. astaci 
infection. This acute protein could be a good indicator of 
the disease progression. The involvement of the recogni-
tion proteins in the response to the A. astaci challenge 
was further supported by the results of the GSEA (Fig. 4, 
Fig. S2). Application of the acute phase proteins as the 
markers of the immune status has been previously pro-
posed for the American lobster, where pentraxin-domain 
containing protein has been recognised as an important 
component of the immune response to the pathogen 
challenge [42, 88, 89].

Antimicrobial peptides: effectors of the innate immune 
response
In the noble crayfish challenged with the Hap B strain we 
identified three up-regulated crustins (Table S5). Among 
them, of particular interest was the DE triple whey acidic 
protein (TWP) domain containing crustin, identified in 
the noble crayfish but with no ortholog in the marbled 
crayfish. In the noble crayfish we identified 11 and in 
the marbled crayfish eight putative crustins (Fig. 1). The 
crustins are part of the cationic antimicrobial peptides 
AMPs and have three main components: the signal pep-
tide, the multi domain region at the N-terminus and the 
whey acidic protein (WAP) domain at the C-terminus. 
They are classified in five groups based on their structure 
(type I-V) [90]. The crustins are mainly expressed in the 
crayfish haemocytes, where they can be rapidly secreted 
directly into the haemolymph during the immune chal-
lenge [91, 92]. Some crustins can also exhibit antipro-
tease activity, possibly inhibiting the proteases secreted 
by A. astaci, limiting the pathogen growth [93]. Recently, 
a novel TWD containing crustin was described in the 
red swamp crayfish (Procambarus clarkii), showing 
antibacterial activity [94]. In the marbled crayfish chal-
lenged with the Hap B strain we identified one up-reg-
ulated crustin 21 days post-challenge (Table S6). The 
crustins may play an important role in the anti-oomycete 
response of the freshwater crayfish and require a closer 
attention in future. The TWD containing crustins might 
be of special interest, due to their presumed tissue wide 
expression profiles and participation in the host immu-
nity throughout the whole body [94].

Up-regulated antilipopolysaccharide factor (ALF) 
was identified in the Hap A challenged marbled cray-
fish 3 days post-challenge (Table S6), while DE ALFs 
were not detected in the noble crayfish. This suggests 



Page 12 of 21Boštjančić et al. BMC Genomics          (2022) 23:600 

that ALF up-regulation might play a vital role in the 
resistance of the marbled crayfish towards the A. astaci 
challenge, possibly by binding to the oomycete β-1-
3-glucan, hence increasing the host antimicrobial 
defences acting as an opsonin for the haemocytes [90]. 
In the noble crayfish, we identified 16 putative ALFs, 
and in the marbled crayfish we identified 12 putative 
ALFs (Fig.  1). The  ALFs are small proteins with the 
hydrophobic N-terminal region forming, three β-sheets 
and three α-helices [45], Pfam: DUF3254. They have 
been observed in wide range of crustaceans [95], and 
they are expressed in a wide range of tissues, showing 
growth inhibiting activity towards bacterial and fungal 
microorganisms, as well as opsonic activities [96, 97]. 
Like the crustins, they possess a signal peptide domain 
and can be excreted [90]. The  AMPs were enriched in 
both the noble crayfish and the marbled crayfish chal-
lenged with Hap B strain (Fig. 4, Fig. S2).

Innexins: involvement of the gap junction proteins 
in the crayfish innate immunity
Among the differentially expressed genes, we detected 
four up-regulated innexins (INXs) 3  days post-chal-
lenge in the Hap B challenged noble crayfish (Table S5). 
These proteins represent the subunits that compose the 
hemichannel of the gap junctions, and they are analo-
gous to the vertebrate connexin subunits [98].The gap 
junctions represent the sites of the direct cell to cell 
communications. This interaction is achieved through 
the formation of the plasma membrane spanning chan-
nels, with each cell contributing to one half of the chan-
nel. The mechanisms of gap-junction communications 
and their repercussions have long been studied in verte-
brates, where they are widely distributed across tissues 
[99, 100]. Although these channels were first observed 
in the 1950s in the noble crayfish cells, their involvement 
in the immunity of the freshwater crayfish species is not 
well understood [101]. We identified 23 putative INXs in 
the noble crayfish and 20 putative INXs in the marbled 
crayfish (Fig.  1). For comparison, 8 INXs were identi-
fied in the fruit fly, 25 in the roundworm (Cenorabditis 
elegans), 21 in the mediterranean medicinal leech (Hir-
udo verbana) and 6 in the Jonah crab (Cancer borealis) 
[102–105]. In the mud crab (Scylla paramamosin), Sp-
inx2 expression was up-regulated in the hepatopancreas, 
the gills and the haemocytes after challenge with bacte-
ria, and was highly expressed in the haemocytes under 
normal conditions [106]. Although the roles of INXs in 
invertebrates are largely unknown, based on the current 
knowledge of the functions of gap junction proteins in 
other species, we can argue that they could be involved 
in the antigen processing, as well as in the metabolic and 

the signalling molecules trafficking [107]. This further 
establishes the role of the hepatopancreas as a key organ 
in the distribution of the immune molecules to the cray-
fish haemolymph [33]. Further studies are needed to elu-
cidate the roles of INXs in invertebrate immunity.

Transcriptional factors as novel components in the response 
to A. astaci challenge
Changes in the gene expression levels are controlled 
through a set of specific transcription factors that inter-
act with the gene regulatory sequences, present in the 
promoter and enhancer regions. In the Hap B challenged 
noble crayfish we identified both up-regulated and down-
regulated genes  3 days post-challenge, which serve as 
transcription factors and bona fide play vital roles in the 
immune response the pathogen (Table S5). One of these 
genes is a master gene expression regulator belonging to 
the CCAAT/enhancer-binding protein (C/EBP) family 
[108]. This family is involved in the regulation of cellu-
lar growth, differentiation and death, as well as in hae-
matopoiesis, and immune and inflammatory processes 
during various diseases [108, 109]. The expression of the 
putative CCAAT/enhancer-binding protein beta (C/EBP-
β), present in single copy in both the noble crayfish and 
the marbled crayfish, was up-regulated in the noble cray-
fish challenged with Hap B, while the expression levels in 
the marbled crayfish remained unchanged (Fig. 1, Fig. 3). 
It has been shown that the expression of the ALFm3 
(member of antilipopolysaccharide factor family) in the 
giant tiger prawn is under the control of C/EBP-β [110]. 
Previously it has also been shown that C/EBP-β binding 
sites are present in the crustin Pm7 [111]. The interaction 
of the C/EBP-β and NF-κB, key transcriptional factor in 
Toll and IMD pathways was reported during the pro-
motion of the inflammatory mediator’s gene expression 
[112]. In mice, C/EBP-β is responsible for the control 
of tumor necrosis factor alpha (TNFα), SAP, comple-
ment C3 component expression [108]. This could sug-
gest that the putative C/EBP-β up-regulation is crucial 
for the acute phase of the A. astaci infection in the noble 
crayfish.

Furthermore, we detected a down-regulation of puta-
tive Krüppel 1-like factor protein (KLF1), a member of 
the Krüppel-like factor (KLF) family, in the noble crayfish 
challenged with A. astaci Hap B (Table S5, Fig. 3). Mem-
bers of KLF family are transcription factors involved 
in a variety of metabolic pathways and in the energetic 
homeostasis of various tissues [113]. KLF1 belongs to 
a group of KLFs which function primarily as transcrip-
tional activators, although interaction with the  tran-
scriptional repressors has also been reported [113]. It is 
present in single copy in both the noble crayfish and the 
marbled crayfish (Fig. 1). In the humans, KLF4 is heavily 
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implicated in the regulation of the anti-fungal response 
to Aspergillus fumigatus and Candida albicans and was 
identified as the only transcriptional factor down-reg-
ulated during the immune challenge [114]. It has been 
shown that in whiteleg shrimp (Litopenaeus vannamei), 
the host LvKLF is important for the replication and gene 
expression of the viral pathogen [115, 116]. In the giant 
river prawn (Macrobrachium rosenbergii), it has been 
shown that  the MrKLF is an important regulator of 
expression of four antimicrobial peptides, namely Crus-
tin (Crus) 2, Crus8, ALF1, and ALF3 [117]. Knowledge 
on the expression and the regulation of invertebrates KLF 
is lacking, therefore conclusive interpretations for the 
function of the putative KLF1 require further research 
efforts. Based on the change in the KLF1 expression lev-
els in the noble crayfish, we might speculate that KLF1 
repression is important for the activation of the immune 
response genes in this species. In the marbled crayfish 
KLF1 expression levels are unchanged during A. astaci 
challenge (Fig. 3).

Together with the KLF1 we also detected down-regula-
tion of the Caspar, a transcriptional suppressor homolo-
gous to the Fas-associating factor 1, in the noble crayfish 
challenged with A. astaci Hap B (Table S5, Fig.  3). This 
transcriptional factor has been shown to play a critical 
role in the fruit fly, negatively affecting its antibacterial 
resistance through inhibition of the IMD pathway [118]. 
In both species the Caspar was detected in a single copy 
(Fig. 1).

Other DEGs in the response to A. astaci challenge
Among the up-regulated DEGs in the marbled crayfish 
we observed several other immune related genes, such 
as the  Tumour necrosis factor (TNF) domain-contain-
ing protein (Panther entry: PTHR15151; protein Eiger; 
putative cytokine) and the  lysosomal enzyme putative 
alkaline phosphatase (AP) (Table S6). The cytokines, 
class of molecules to which TNFs belong, are heavily 
involved in the mediation of the immune and the inflam-
matory responses [119]. They are also known activators 
of the extracellular trap release (ETosis), a microbicidal 
mechanism [120]. TNF is also a downstream target of 
the above mentioned KLFs [114]. Moreover, in the fruit 
fly, the TNF homolog Eiger is responsible for the release 
of the  proPO in the crystal cells [121]. The  TNF is also 
an activator of the C/EBPβ expression and DNA binding 
activity [109]. The implication of this gene in the regula-
tion of anti-oomycete responses remains to be experi-
mentally proven in future studies. Alkaline phosphatase, 
β-glucuronidase, lysozyme, esterases and proteases have 
been recognised as some of the main lysosomal enzymes 
in the invertebrates [31]. Lysosomal activity has been 
implicated in the mechanism of antigen processing in 

the hepatopancreas epithelial cells and their subsequent 
release into the haemolymph in the giant tiger prawn [33, 
34, 122]. This observation might further establish the role 
of hepatopancreas in building the immune tolerance to 
the A. astaci challenge.

Interestingly, we uncovered 4 members of the heat-
shock protein (HSP) family (HSP70-like, HSP-like-1, 
HSP-like2 and HSPBP 1) together with proteasome 
components (20S proteosome subunit alpha 1, 26S pro-
teasome regulatory subunit N3 and 26S proteasome 
regulatory subunit T3), as down-regulated 3 days post 
challenge with Hap B strain in the acutely infected noble 
crayfish (Table S5, Fig. 3). Establishing a correct protein 
conformation is important for the protein activity. Fail-
ure to do so could be due to a lack of molecular chaper-
ons, such as members of the HSP family [123]. Moreover, 
down-regulation of the ubiquitin mediated proteolysis 
proteasome genes might have led to the misfolded pro-
tein aggregation. It has been shown that HSP 70 is up-
regulated in the anti-viral response to the White spot 
syndrome virus (WSSV) in the giant tiger prawn [124] 
and the red swamp crayfish [125]. In the fruit fly, it has 
been shown that the HSP 27 has an antiapoptotic activ-
ity, inhibiting the TNF-mediated cell death [126]. This 
might suggest that during the A. astaci challenge, in the 
acutely infected noble crayfish, a tissue wide apoptosis is 
in progress.

Coevolutionary aspects of the host immune response 
to the pathogen challenge
Our experimental setup, consisting of the noble cray-
fish and the marbled crayfish challenged with A. astaci 
strains of different origin and virulence, allowed us to 
make inferences on coevolutionary aspects of the host 
immune response to the pathogen challenge (Fig. 5). The 
utilized Hap B strain, characterised by high virulence, 
was isolated from a latently infected American invasive 
signal crayfish (Pacifastacus leniusculus) host from lake 
Tahoe (USA). The utilised Hap A strain, characterised by 
low virulence, was isolated from a repeatedly challenged, 
latently infected noble crayfish host population, and 
could have been present in this population for at least 
70 years [127]. Consequently, both strains should repre-
sent extremes in the mosaic landscape of A. astaci strains 
present in Europe. The results of the infection experiment 
described in Francesconi et al. [41] showed that the noble 
crayfish challenged with A. astaci Hap B have the high-
est amount of the pathogen DNA in their tissues, indicat-
ing that the pathogen successfully overcame the immune 
defences of the host. This corresponds to the high num-
ber of immune related DEGs observed in this experi-
mental group. Furthermore, it was observed in other 
experiments (our unpublished experimental results) 
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that all the noble crayfish infected with this specific Hap 
B strain died within 2 weeks after challenged with the 
parasite. On the other hand, the Hap A challenged noble 
crayfish contained the pathogen, without the appar-
ent mobilisation of immune response in the hepatopan-
creas and were asymptomatic 45 days post-challenge 
[41]. In the marbled crayfish, the Hap A challenged 
group showed the highest number of the immune related 
DEGs, while the Hap B challenged group showed no clear 
immune response. In fact, in the Hap B challenged mar-
bled crayfish we observed no immune response activa-
tion based on the differential gene expression analysis, 
although enrichment of the proPO, AMPs and recogni-
tion gene sets suggesed a low-level mobilization of these 
pathways (Fig. 4, Fig. 5, Fig. S2). Interestingly, the high-
est amount of pathogen DNA in the marbled crayfish was 
detected in the Hap B challenged group [41]. This result 
indicates that the virulence of A. astaci and its ability to 
colonise the host’s tissues are not the only factors influ-
encing the strength of the host’s immune response. In 
fact, one possible explanation could revolve around pro-
cesses of coevolution between the crayfish and a specific 
strain of A. astaci.

It has been shown in several instances that inverte-
brates, although lacking an adaptive immune system, 
can build an immune memory, mounting an immune 
response of different magnitude after subsequent expo-
sures to the same pathogen [29, 128]. Such a response 
could be of tolerance with a lowered immune response to 
known stimuli, or of potentiation with a higher immune 
response upon re-encounter of the same pathogen 
[128]. Furthermore, transgenerational immune prim-
ing, in which the immune memory is transferred to the 
next generations by parents exposed to the pathogen, 
has been observed in insects [129, 130] and in the brine 
shrimp (Artemia franciscana) [131]. While the specific 
mechanisms are not completely understood and are likely 
to be different depending on the host and the parasite, 
transgenerational immune priming might be the basis 
of the long-debated host-pathogen coevolution between 
North American crayfish species and A. astaci [14, 132].

It is accepted that coevolution is a dynamic and ongo-
ing process, in which the rapid adaptation of the host to 
the pathogen (and vice versa) can occur over short time 
frames, even a few decades [6]. The Hap A strain was 
isolated from the latently infected noble crayfish in Lake 
Venesjärvi, Finland. The noble crayfish population in the 
lake faced at least 3 mass mortalities in the past 50 years 
until the year 2000. In 2013, the population was identified 
as carrier of A. astaci [127]. The results of our study sug-
gest that, probably in the span of a minimum of 50 years, 
the Hap A strain used in this study adapted to its naïve 
native European host, the noble crayfish, presumably 

through modification of its pathogenic epitopes. This has 
resulted in the overall lowered virulence of the pathogen. 
More in general, Hap A contains the first A. astaci strains 
that arrived in Europe likely  in 1859s (Alderman 1996). 
Therefore, it is likely that the prolonged coexistence with 
other European crayfish species might be leading other 
strains belonging to this haplogroup through the same 
adaptation process of the strain used in the experiment.

The noble crayfish utilised in this study come from the 
population inhabiting Lake Rytky. This population went 
through a crayfish plague epizootic in the 1980s [19]. 
Since then, it has recovered and there haven’t been fur-
ther detections of A. astaci presence [19]. The apparent 
non-activation of the immune system in the noble cray-
fish infected with Hap A could represent an instance 
of immune tolerance, in case the A. astaci strain that 
infected the population of Lake Rytky belonged to Hap 
A. Unfortunately, the haplogroup of that A. astaci strain 
is unknown. Therefore, it is not possible to draw conclu-
sions on how a possible coevolution might have shaped 
the immune response of the crayfish from Lake Rytky 
to the A. astaci strains tested in the experiment. As Hap 
A of A. astaci adapted to the noble crayfish, the new 
epitopes presented by this A. astaci strain led to the 
higher expression of the diverse PRR genes in the mar-
bled crayfish, responsible for the recognition of the path-
ogen and for boosting its immune response capability.

The origin of the marbled crayfish can be traced back 
to a recent triploidisation event occurred in Procamba-
rus fallax from Florida [133, 134]. To date, there are no 
data on the presence of A. astaci in Florida. However, 
considering the widespread distribution of A. astaci in 
the eastern USA (Martìn-Torrijos et  al., 2021) and the 
elevated resistance of the marbled crayfish to the path-
ogen (Francesconi et  al., 2021), it is likely that P. fallax 
coevolved with some strains of A. astaci. The developed 
resistance to A. astaci was then inherited by the marbled 
crayfish. As A. astaci haplogroup B is only distributed 
in the western part of the USA, it is very unlikely that 
either of the marbled crayfish or the P. fallax encoun-
tered strains belonging to Hap B [135]. Yet, the remark-
able resistance of the marbled crayfish to the Hap B strain 
tested in the infection experiment indicates that the 
presumed coevolution of the P. fallax with its native A. 
astaci strain allowed the development of a broad resist-
ance to different strains. Furthermore, in the survey of 
the distribution of A. astaci in the USA, [135] it has been 
observed that different strains of the pathogen can coex-
ist in the same population and even in the same individ-
ual. The elevated diversity of A. astaci in its native range 
and its widespread distribution would create favourable 
conditions for the selection of the crayfish species with a 
broad resistance. This is further supported by the lack of 
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A. astaci epizootics in North America, even after inter-
nal translocation of the freshwater crayfish outside their 
natural range [135]. Interestingly, the eastern USA is rich 
in strains belonging to the haplogroup A [135]. If P. fallax 
has been subjected to multiple encounters with strains 
belonging to this haplogroup, this would further validate 
our results, indicating that the Hap A strain from Lake 
Venesjärvi went through quick evolutionary changes to 
adapt to its new noble crayfish hosts, while become less 
recognisable for the marbled crayfish.

It has been argued that the harm to the native European 
crayfish stocks by A. astaci would have been much more 
contained, if the presence of A. astaci in Europe resulted 
only from the first accidental introduction around 1850 
[12]. The first mass mortalities would have led to local 
extinction of the crayfish populations, limiting the spread 
of the crayfish plague, and potentially causing the disap-
pearance of the pathogen [12]. Unfortunately, the sub-
sequent intentional introductions of different species 
of North American crayfish, and with them new haplo-
groups of A. astaci, led to an uncontrollable spread of 
several pathogen strains, which are now firmly estab-
lished in Europe [12]. While we can conclude that since 
its introduction into Europe the Hap A strain used in this 
study went through significant evolutionary changes, the 
available markers cannot differentiate between this strain 
and other strains belonging to Hap A, whether present in 
Europe nor in Northern America [135]. It is increasingly 
evident that while the genetic markers used until now 
(RAPD, mtDNA and microsatellites) allow a first general 
discrimination of the intraspecific diversity of A. astaci 
[21, 136, 137], they are not reliable predictors of the vir-
ulence of the strains and of the strains’ potential impact 
on native European crayfish and thus on freshwater eco-
systems. The conservation efforts of native European 
crayfish would greatly benefit from a genomic approach 
to analyse the genome-wide intraspecific diversity of A. 
astaci. Such an approach would allow a much finer dis-
crimination between strains, integrating information 
regarding virulence of the pathogen and its consequences 
on the freshwater ecosystem. Ultimately, this would lead 
to better informed and finely tuned conservation actions.

Study limitations
This study provides a deep insight into the innate 
immune response following an A. astaci challenge in the 
noble crayfish and the marbled crayfish. Transcriptomic 
data allowed us to explore the gene expression land-
scape and to identify key genes in the crayfish immunity. 
However, information about genomic locations and gene 
surroundings, which are highly influential on the gene 
expression profiles, are still not available. Consequently, 
generating first high-quality genome assemblies for the 

freshwater crayfish represents a priority in the field of 
crayfish immunity, and would allow for the future com-
prehensive epigenomic studies. Unfortunately, until now 
this has proven to be a challenging task, because fresh-
water crayfish genomes are often large in size and have 
a high proportion of repetitive DNA sequences [133, 
138, 139]. Furthermore, while in Decapods the role of 
the hepatopancreas in the immune response against 
pathogens has already been demonstrated, it has to be 
considered that the observed expression profile might 
be influenced by  the  infiltrating haemocytes [27, 93]. In 
the future, this issue could be resolved by investigating 
additional tissues and by applying a higher resolution 
single cell RNA sequencing, capable of differentiating 
different cell populations within a tissue [140]. Finally, 
the gene expression analysis in the marbled crayfish was 
conducted after removal of the batch effect related to the 
reproducing crayfish, and this could have biased our 
results. It has already been shown that immune related 
genes are over-expressed in the  reproducing insects 
[141]. If, similarly, reproduction in crayfish involves an 
up-regulation of immune related genes, the removal of 
the batch effect might have also removed relevant DEGs 
in the marble crayfish groups. In general, differences in 
the gene expression caused by different sex, size, age, 
molt stage and the reproductive status of the experimen-
tal animals should be reduced to a minimum by selecting 
for the experiment animals belonging to the same cohort. 
This way the possible biases introduced by the removal of 
batch effects would be avoided.

Conclusions
Our results indicate that coevolution of the crayfish and 
a specific strain of A. astaci plays a critical role in deter-
mining the strength of the host immune response to the 
pathogen challenge. The lowered virulence of the Hap A 
strain used in this study and lowered immune response 
to this strain in the noble crayfish suggest that coevolu-
tion between A. astaci and the noble crayfish can rather 
rapidly occur in nature. This host-pathogen co-adapta-
tion raise hope for the future survival of native European 
crayfish. Nonetheless, repeated introductions of novel 
A. astaci strains represent an overwhelming pressure for 
the native European crayfish populations, as is evident 
from the acute response of the noble crayfish to the Hap 
B strain. Simultaneously, it seems that the ability of the 
invasive marbled crayfish to mount an adequate immune 
response to different A. astaci strains is much higher, 
probably due to its North American origin and possible 
interactions of its closest relative P. fallax with multiple 
A. astaci strains. In the light of these results, it is now evi-
dent that future research efforts should be aimed towards 
elucidating the key factors in this active adaptation 
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between  the pathogen and the  host. Therefore, the 
identified genes and pathways involved in the immune 
response to the pathogen A. astaci represent a milestone 
in the conservation and aquaculture efforts for the native 
European crayfish species. Although our understand-
ing of the freshwater crayfish innate immune response is 
still limited, it is becoming clearer that multiple organs 
and a variety of molecular pathways play important roles. 
Here, we showcased the importance of the hepatopan-
creas as a highly relevant immune system organ in the 
response to the A. astaci challenge, for both the native 
noble crayfish and the invasive marbled crayfish. In the 
immune response of both crayfish species the activation 
of the proPO pathway was observed. Still, we detected a 
substantial difference in the immune response in the two 
species in the mobilisation of different groups and num-
ber of effectors. Therefore, it is crucial that future stud-
ies are not limited to the analysis of immune response in 
the haemolymph and to the proPO pathway, but rather 
consider the multifactorial nature of the innate immune 
response. Lastly, results provide a basis for the develop-
ment of the screening assays that will allow detection of 
the resistant crayfish populations, a promising tool for 
conservation and management programs.

Materials and methods
Aim, design, and study setting
A controlled infection experiment was previously con-
ducted by Francesconi et al. [41] on the marbled crayfish 
and the noble crayfish. All the crayfish were acclimatised 
in individual tanks with circulating water for 20 days 
prior to the start of the experiment. The water condi-
tions (oxygen levels, temperature, conductivity and 
pH) were monitored daily. The day- night rhythm was 
mimicked through artificial lights, with 8 h of light 
and 16 h of dark. All the experimental crayfish were of 
the similar size, the marbled crayfish (mean carapace 
length = 39.7 ± 2.7 mm) and noble crayfish (mean cara-
pace length = 43.5 ± 2.3 mm). The crayfish were given 
every second day preboiled frozen sweet corn. The cray-
fish were challenged with two different strains of A. 
astaci, a highly virulent Hap B strain and a lowly virulent 
Hap A strain. All the challenged crayfish were infected 
with 1000 zoospores per mL. In total 55 individuals (30 
marbled crayfish and 25 noble crayfish) were selected for 
RNA sequencing, with five replicates per treatment (Hap 
A, Hap B, control) from two time points (3d, 21d post 
challenge), with exception of the Hap B challenged noble 
crayfish group, in which all crayfish became moribund in 
the first days of the challenge and were therefore all sam-
pled in the first time point. For each individual a portion 
of the hepatopancreas was dissected and snap frozen in 
liquid nitrogen. Detailed description of the infection 

experiment and its results Francesconi et  al. [41]. The 
details of the bioinformatical processing of the RNA 
sequencing reads and transcriptome assembly Boštjančić 
et al., [142].

Identification of the crayfish innate immunity genes 
and taxonomical distribution of transcripts
We retrieved a dataset of innate immunity related genes 
identified in Malacostraca by Lai and Aboobaker [45]. 
This dataset was expanded with the selected differen-
tially expressed genes (DEGs) identified in the Hap B 
challenged noble crayfish. Furthermore, we included 
the genes specifically related to the proPO cascade. The 
complete list of the used innate immunity genes and their 
respective sequences are available in the Table S1 and 
File S1. Transcriptome assemblies were queried against 
the subset of the innate immunity related genes with 
BLASTn and BLASTx 2.10.1+. Hits were then inspected, 
their function was confirmed based on their e-value 
(lower than 1e-10), and the presence of the functionally 
important gene domains identified with a Pfam search.

Read mapping
All of the sample 2 × 150 bp paried-end reads (Illu-
mina NovaSeq6000; SRA study: SRP318523, read depth: 
36.8 M- 68.9 M, mean: 48.59 M) were mapped to the 
newly obtained reference transcriptome [142] (noble 
crayfish TSA: GJEB00000000 and marbled crayfish TSA: 
GJEC00000000) using the pseudo-alignment approach 
implemented in Salmon 0.13.1 [143]. Several “flags” were 
used in the Salmon mapping steps to correct the biases 
that might originate from sequence data: “-validateMap-
pings” [144], “--seqBias” and “--gcBias” [145].

Differential gene expression analysis
The differential gene expression analysis was conducted 
according to the DESeq2 protocol [146] implemented 
in R with the following model design for the noble cray-
fish: sex (male/female) + groups (Control vs Hap A or 
Hap B challenge) and for the marbled crayfish: ~repro-
duction (yes/no) + groups (Control vs Hap A or Hap B 
challenge). Independent comparisons were conducted 
for each sampling point. Raw counts from the Salmon 
output were used as the input. Transcripts highly simi-
lar to the marbled crayfish and the noble crayfish mitog-
enome, respectively, were removed prior to the analysis 
based on the BLAST hits against the mitogenome (NCBI 
accession number: KX279347.1 and NC_020021.1). 
Transcripts assigned to the bacteria and the archaea were 
also removed based on the DIAMOND search (see 2.2). 
results Counts for individual Trinity transcript isoforms 
were grouped to Trinity genes with the tximport R pack-
age [147]. Lowly expressed genes were filtered out: only 
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genes with the raw counts higher/equal to 10 across at 
least five samples were retained. The package “Enhanced-
Volcano” [148] was used for the visualisation of the DEGs 
and “apeglm” for noise removal [149]. The list of DEGs 
was exported and their counts, log2fold changes and 
adjusted p-values (FDR = 0.1, p-value = 0.05) together 
with their respective annotations were merged. Possible 
overlaps between the DEGs at different time points were 
inspected using Venn diagrams [150].

Gene set enrichment analysis
Enrichment of the innate immunity gene sets identified 
in the 2.2. were conducted with ClusterProfiler [151]. 
Based on the results of the DESeq2 analysis, for each 
group all genes were ranked according to the follow-
ing metric: -log10(x)/sign(y), where x is the p-value and 
y log2 fold change. To detect the enriched gene sets we 
used the GSEA() function, with the p values adjusted 
based on Benjamini-Hochberg correction for the multi-
ple testing (cutoff < 0.01). Graphical representation of the 
results was obtained using the gseaplot2() function [151].
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