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Abstract 

Background:  Representing the complex interplay between different types of bio-
molecules across different omics layers in multi-omics networks bears great potential 
to gain a deep mechanistic understanding of gene regulation and disease. However, 
multi-omics networks easily grow into giant hairball structures that hamper biological 
interpretation. Module detection methods can decompose these networks into smaller 
interpretable modules. However, these methods are not adapted to deal with multi-
omics data nor consider topological features. When deriving very large modules or 
ignoring the broader network context, interpretability remains limited. To address these 
issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBA-
TOMIC), which infers small and interpretable modules with a specific topology while 
keeping track of connections to other modules and regulators.

Results:  SUBATOMIC groups specific molecular interactions in composite network 
subgraphs of two and three nodes and clusters them into topological modules. These 
are functionally annotated, visualized and overlaid with expression profiles to go from 
static to dynamic modules. To preserve the larger network context, SUBATOMIC inves-
tigates statistically the connections in between modules as well as between modules 
and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to 
analyze a composite Homo sapiens network containing transcription factor-target gene, 
miRNA-target gene, protein–protein, homologous and co-functional interactions from 
different databases. We derived and annotated 5586 modules with diverse topological, 
functional and regulatory properties. We created novel functional hypotheses for unan-
notated genes. Furthermore, we integrated modules with condition specific expression 
data to study the influence of hypoxia in three cancer cell lines. We developed two 
prioritization strategies to identify the most relevant modules in specific biological 
contexts: one considering GO term enrichments and one calculating an activity score 
reflecting the degree of differential expression. Both strategies yielded modules specifi-
cally reacting to low oxygen levels.

Conclusions:  We developed the SUBATOMIC framework that generates interpretable 
modules from integrated multi-omics networks and applied it to hypoxia in cancer. 
SUBATOMIC can infer and contextualize modules, explore condition or disease specific 
modules, identify regulators and functionally related modules, and derive novel gene 
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functions for uncharacterized genes. The software is available at https://​github.​com/​
CBIGR/​SUBAT​OMIC.

Keywords:  Composite subgraphs, Multi-edge networks, Network analysis, Multi-
omics, Modules, Gene regulation, Topology, Hypoxia, Gene function prediction, Gene 
regulatory networks

Introduction
Eukaryotic gene regulation involves a complex interplay between different types of 
biomolecules to safeguard correct gene expression in space and time. Transcription 
factors (TFs) bind to specific sequences in the DNA, such as promoter and enhancer 
regions, to activate or repress gene expression [1–3]. Co-factors bind to TFs and 
interact with the transcriptional machinery [2, 4]. At the epigenetic level, the acces-
sibility of chromatin is the degree to which molecules such as TFs, RNA-polymer-
ases or chromatin organizing proteins are able to establish a physical contact with the 
underlying DNA via promotor, enhancer and insulator regions [5]. The accessibility 
is dynamic and changes in response to external stimuli as well as developmental sig-
nals lead to notable differences in expression between various cell types [5, 6]. Several 
classes of non-coding RNA (ncRNA) also have an impact on gene regulation. Micro-
RNAs (miRNA) suppress protein translation or induce messenger RNA (mRNA) deg-
radation, mostly by binding to the 3’-UTR of target messenger RNAs [7, 8]. Moreover, 
they are regulated by DNA methylation, histone modifications, and more than 140 
forms of RNA modifications [9]. In turn, miRNAs themselves target epigenetic-asso-
ciated enzymes such as DNA methyltransferases, ten-eleven translocation genes, and 
histone deacetylases [9, 10]. Long non-coding RNAs (lncRNAs) act as signal mole-
cules that mediate transcription of downstream genes, as decoy molecules to repress 
biological processes and pathways by binding TFs and blocking their regulatory activ-
ity [11, 12], or compete with mRNAs for miRNA binding [13, 14]. Additionally, sev-
eral genes, especially regulatory proteins such as TFs and miRNAs, have undergone 
duplication events during their evolution, leading to gene redundancy and/or the 
acquisition of novel biological functions over time [15, 16].

High-throughput technologies, like RNA-seq, ChIP-seq and mass spectrometry yield 
an enormous amount of high-quality data in the context of gene regulation. These 
data are available in databases that continuously grow by adding and integrating novel 
data types and datasets. One example is the resource ‘Discriminant Regulon Expres-
sion Analysis’ (DORothEA) [17, 18]. It contains signed TF-target interactions based on 
literature-curated resources, ChIP-seq peaks, gene expression-based inference and TF 
binding sites information [17, 18]. DORotheEA is embedded in the OmniPath database, 
which includes many additional interaction types such as miRNA-target interactions, 
lncRNA-target interactions, ligand-receptor binding, and protein–protein interactions 
[19, 20]. HumanNet is a human gene network resource that captures co-functional and 
physically binding interactions: the co-functional network (COF) includes co-essential-
ity and co-expression interactions, while the protein–protein interaction network con-
tains literature-curated and high-throughput interactions of physically binding proteins 
[21]. Many more databases exist for diverse types of molecular interactions and their 
size and number continuously grow.

https://github.com/CBIGR/SUBATOMIC
https://github.com/CBIGR/SUBATOMIC
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To understand gene regulation in depth, we need to comprehend how different 
molecular interactions together coordinate phenotype-specific gene expression. Indeed, 
several studies have shown that considering complementary molecular interactions 
increases our understanding of regulatory processes. Co-expressed genes and genes 
encoding physically interacting proteins are often regulated by the same set of TFs [22, 
23]. Genes encoding TFs that control miRNA expression have a higher chance to be 
post-transcriptionally repressed by the miRNA [24]. Genes co-regulated by miRNAs 
show weaker functional links compared to TF-regulated genes [25]. These complex, 
diverse interactions between several biomolecules in gene regulation can be modeled at 
a systems level in gene regulatory networks (GRNs). GRNs map the molecular interac-
tions between regulators, mainly TFs, and their target genes, based on relevant high-
throughput data, with or without using computational inference [26, 27]. Integrated 
GRNs take into account different types of molecular interactions implicated in gene reg-
ulation [28]. Currently, proficient methods for integrating multi-omics data into these 
GRNs are still lacking, as well as methods for the analysis, and biological interpretation 
of intricate, integrated networks.

Biological networks are often hard to interpret as a whole. They possess a high num-
ber of nodes and edges merged into a giant ‘hairball’ structure that makes a meaning-
ful visualization and their functional interpretation extremely challenging [29, 30]. 
Many approaches have been developed to tackle this problem. Their shared principle 
is to decompose these hairball structures into smaller interpretable subnetworks, often 
referred to as modules or communities. Methods can be co-expression based, topol-
ogy-based, pan-sample based and multi-edge based including tools such as WGCNA, 
SimMod, ModulOmics, and LemonTree [31–41]. WGCNA clusters genes with high 
expression correlation and summarizes modules using their module eigengene [31, 32]. 
SimMod uses a mixed integer non-linear programming model to integrate WGCNA-
based co-expression networks with physical and genetic interactions into multi-omics 
communities [33]. ModulOmics identifies de-novo cancer driver pathways and mod-
ules by integrating protein–protein interactions, mutual exclusivity of mutations and 
copy number variations (CNVs), transcriptional co-regulation, and co-expression [40]. 
Other methods integrated TF-target gene interactions and protein–protein interactions 
with a ‘function-to-structure’ based method by deriving modules based on genes with a 
shared GO annotation [41]. LemonTree infers co-expression modules in multiple runs, 
merges these in consensus modules, and finally connects these modules to regulators, 
such as TFs, miRNAs or CNVs, using multi-omics data [36]. While existing approaches 
strongly increased the interpretability of large multi-omics networks, some challenges 
remain. One common limitation is that the number of derived modules is usually very 
small and they contain a lot of genes. Most large modules correlate well with biological 
properties or phenotypes but lack detailed and causal interpretation. Moreover, mod-
ules are interpreted as completely separated entities and do not share any genes. How-
ever, when considering topology in multi-edge networks, genes can appear in different 
topological contexts and thus in different modules. On the other hand, given that many 
small and interpretable modules exist, keeping track of the inter-module relationships is 
crucial to not miss out on a broader network interpretation. Thus, a method that consid-
ers network topology, edge-causality, and condition-specific data (e.g. expression) while 
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producing small and interpretable modules in a specific network context can substan-
tially complement the existing inference methods.

We previously proposed a data integration framework for the worm Caenorhabditis 
elegans and the plant Arabidopsis thaliana that groups specific molecular interactions 
in composite network subgraphs, clusters these next into biologically relevant, topologi-
cal modules, highlights connections between modules and regulators, and finally over-
lays these modules with gene expression profiles to go from static to dynamic modules 
[28]. We learned that different molecular interactions interrelate in distinct topological 
modules with specific biological functions to generate a coordinated response in gene 
regulation. Here, we extended this data integration framework to SUbgraph BAsed 
mulTi-OMIcs Clustering (SUBATOMIC). SUBATOMIC infers composite subgraph-
based modules from diverse interaction databases and gene expression profiles and 
analyzes them in an updated, generalized, and automated analysis framework. Upon dis-
secting the composite network into small interpretable modules, we keep track of inter-
actions that connect regulators with modules as well as modules with each other in a 
superview to preserve their larger network context and facilitate biological interpreta-
tion. To make the static network modules dynamic and evaluate their role in specific 
conditions, we implemented a module activity score. The score can be used to rank mod-
ules with regard to their degree of dysregulation upon condition change. The method is 
applicable to any user-defined set of networks with overlapping nodes for any species of 
interest.

With its unique approach, SUBATOMIC addresses several gaps in network modular-
ity and multi-omics data analysis. Hyper-edge clustering enables to select for specific 
topological features in the network, and at the same time to generate small and easily 
interpretable subnetworks. Moreover, it is possible to investigate all topological fea-
tures in the ALL modules setting. While analyzing interactions in-between modules 
and between modules and regulators, users can keep track of other modules and/or 
regulators that might be involved in similar biological processes, hence embedding the 
modules in their global network context. The automated pipeline also aids in the func-
tional annotation of modules and their visual exploration in Cytoscape. These properties 
of SUBATOMIC largely facilitate biological interpretation of multi-omics data. While 
many tools focus on specific interactions such as protein–protein interaction networks, 
our method can incorporate any type of directed and undirected interactions independ-
ent of the species. Moreover, SUBATOMIC can also explore dynamic networks upon 
integration of condition-specific data such as transcriptomics, and we provide several 
metrics to quantify the condition-specific activity of modules. Hence, it is a comprehen-
sive and versatile network analysis tool to investigate specific biological questions using 
multi-omics data.

We applied SUBATOMIC to integrate six networks from H. sapiens, respectively, 
based on TF-target interactions, miRNA-mRNA interactions, protein–protein interac-
tions, functional interactions, and homologous connections for proteins and miRNAs. 
The inferred modules allowed us to propose functional hypotheses for insufficiently 
annotated proteins. As proof of concept, we further contextualized the modules with 
expression data for cancer cell lines under hypoxic conditions. Hypoxia occurs when a 
cell or tissue is not sufficiently supplied with oxygen to maintain their homeostatic state 
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(Gaspar and Velloso, 2018; Hiraga, 2018). This state frequently appears in the tumor 
microenvironment leading to cellular responses that increase the risk of metastasis and 
reduce the success of treatment [42, 43]. We identified modules sensitive to hypoxia con-
ditions using both activity and GO term based features. We showed that these respon-
sive modules were highly connected in our superview analysis compared to a random 
control. We highlighted several examples and guidelines on how to use SUBATOMIC 
to gain biological insights. The SUBATOMIC pipeline is available on GitHub (https://​
github.​com/​CBIGR/​SUBAT​OMIC).

Results
SUBATOMIC: a subgraph based multi‑omics clustering framework

We developed SUBATOMIC, a SUbgraph BAsed mulTi-Omics Clustering framework 
to construct and analyze multi-edge networks (Fig.  1). SUBATOMIC takes networks 
composed of different interaction types as input. Interactions can be directed such as 
TF-target interactions and miRNA-target interactions or undirected such as protein–
protein interactions. The networks need to have a partial overlapping node set to allow 
for integration over the different interaction types. Given the multi-edge networks, 
SUBATOMIC first uses the subgraph enumeration algorithm ISMAGS to decompose it 

Fig. 1  Overview of the SUBATOMIC workflow. Input: SUBATOMIC takes as input a multi-edge network 
consisting of directed and/or undirected interactions of different interaction types. Supporting information 
might contain additional input files such as GO terms, gene annotations, and a list of subgraph definitions 
that can be used by ISMAGS to screen specifically for these subgraphs (Methods). SUBATOMIC: (1) The 
multi-edge network is then decomposed into composite subgraphs using ISMAGS for co-pointing (COP), 
co-regulated (COR), circular (CIR), feed forward loop (FFL), feedback undirected loop (FBU), feedback 2 
undirected loop (FB2U), complex (COM) and 2 feedback (2FB) subgraphs. (2) Based on the subgraphs, 
SCHype generates topological modules for each subgraph type as well as for all subgraph types together 
(ALL). (3) Modules are connected to each other as well as to regulators to produce an integrated view (further 
called superview). (4) Modules are functionally annotated with GOATOOLS. (5) We generated files that can be 
imported into Cytoscape for module visualization. Networks analyzed in this way are considered static if they 
do not incorporate any condition specific information. Downstream Analysis: Here modules are integrated 
with condition-specific expression data. Several scores reflect the condition-specific activity of modules: the 
expression dynamicity score (ECD), the average Pearson correlation of expression values in a module (nPCC) 
and the module activity score

https://github.com/CBIGR/SUBATOMIC
https://github.com/CBIGR/SUBATOMIC
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into a set of 3-node composite subgraphs [44]. Additionally, we incorporated an own 
script to find specific 2-node subgraphs. Subgraphs are classified according to the type 
and direction of edges they contain. By integrating directed and undirected edges in 2- 
and 3-node composite subgraphs, we discriminate eight different subgraph types [28]. 
In a co-pointing subgraph (COP), an undirected edge connects two regulators and 
together they regulate a target. The co-regulated subgraph (COR) contains one regula-
tor controlling two interacting target genes. The feed forward loop (FFL) has a regulator 
that directly regulates a target gene and another regulator, which also controls the target 
gene. In the circular feedback subgraph (CIR), regulators act upon each other through 
feedback loops. The feedback-undirected subgraph (FBU) consists of two directed inter-
actions in a cascade that are connected by an undirected interaction. The feedback 2 
undirected subgraph (FB2U) combines two undirected interactions and one directed 
interaction. The complex subgraph (COM) contains only undirected edges. Finally, the 
two-node feedback subgraph (2FB) couples a directed edge with an undirected edge.

We followed the ISMAGS nomenclature in representing subgraphs by their specific 
interaction types and edge signs [44]. Each input network of a specific interaction type 
is assigned a specific letter: R for TF-gene, M for miRNA-mRNA, P for protein–pro-
tein, C for co-functional, and H for homologous interactions. Then each 3-node sub-
graph obtains a three-letter representation according to the specific interaction type 
of its edges. For example, a PPP subgraph contains three undirected edges from the 
protein–protein interaction network and is hence of the COM type. RRP contains two 
edges from a regulatory TF-gene network and one from the protein–protein interaction 
network and is hence of the COR type. Subsequently, all subgraphs are clustered by the 
hypergraph-based spectral clustering algorithm ‘Spectral Clustering in Hypergraphs’ 
(SCHype) [45]. SCHype optimizes the edge-to-node ratio on hyperedges that repre-
sent the 3-node and 2-node subgraphs during clustering. The resulting modules share 
common topological features and possess specific biological functions [28, 45]. SUBA-
TOMIC uses SCHype to first generate clusters within each type of subgraph (COM, 
CIR, FFL, …). Additionally, all subgraphs together are clustered in a module type called 
‘ALL’. We further filter for subgraphs that contain between 5 and 50 genes similar to our 
previous approach [28]. Next, SUBATOMIC applies GOATOOLS to functionally anno-
tate the modules based on Gene Ontology [46]. At this point, small and biologically 
interpretable modules have been obtained, but their network context is not yet consid-
ered. To address this, we arrange all modules in superview that connects modules with 
each other, and finds regulators connected to each module. SUBATOMIC also calculates 
an output that can be imported in Cytoscape for module network visualization [47]. As 
a postprocessing step, the topological modules are integrated with expression data to 
study dynamics of gene regulation over different experimental conditions. In this step 
several metrics can be calculated to further characterize and prioritize modules in spe-
cific conditions. More details on the pipeline can be found in the methods section.

Integrated human regulatory networks

Multi-omics data integration aids in the understanding of dysregulation in complex dis-
eases. Our data integration framework SUBATOMIC not only makes use of multi-omics 
networks but also connects topological and functional information to leverage their 
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interpretation. In this study we aimed to construct and analyze multi-omics networks for 
H. sapiens with SUBATOMIC. Therefore, we integrated TF-target gene, miRNA-mRNA, 
homologous, protein–protein, and co-functional interactions from public resources and 
finally added expression data from cancer cell lines under hypoxic conditions. We pro-
vided a layout of how SUBATOMIC can be used to investigate perturbed gene regula-
tion in a human disease context.

We included five different networks in our analysis that cover distinct interaction 
types that all influence gene regulation (see Table 1, Methods and Additional file 1). Two 
networks are directed and model regulatory relationships: the TF-target gene network 
(R) and the miRNA-mRNA network (M). Three networks are undirected: the homolog 
network (H), the protein–protein interaction network (P) and the co-functional net-
work (C). The R network includes 53,232 TF-target gene interactions from OmniPath 
from three different OmniPath sub-databases: DoRothEA (levels A-C), TF-target (cura-
tion score > 1) and TF-miRNA interactions [19, 20]. The M network includes 11,085 
miRNA-mRNA interactions from OmniPath. To include gene homology, we included 
10,847 paralogous interactions between genes from the Ensemble archive and homolo-
gous miRNAs with identical seed sequences from miRbase [48, 49]. To include a layer of 
functional information, we chose two mutually exclusive networks from HumanNet v2 
[21, 50]. The 6637 co-functional edges contain co-essentiality, co-expression, and protein 
domain profile association edges. The 24,773 physical protein–protein interaction net-
work contains edges from high throughput assays such as yeast-two-hybrid and affinity 
purifications and from literature-curated protein–protein interactions.

More than half of the detected subgraphs are interaction type specific

ISMAGS detected a total of 787,347 3-node subgraphs (Fig.  2). Complex sub-
graphs were most abundant, covering 82.56% of all composite subgraphs, contain-
ing mostly CCC (413,938  –  48.77%) and RRR (85,435  –  10.07%), followed by PCC 
(80,035  –  9.43%). While the overall fraction of non-COM type subgraphs might be 
small, rare subtypes can reveal interesting mechanistic insights. Subgraphs shared 
between different interaction types are less often observed than subgraphs detected 
within one type of interaction. A total of 534,665 subgraphs contain at least two co-
functional interactions, while 150,582 subgraphs contain at least one co-functional 
and one protein–protein interaction. Subgraphs with edges from the co-functional 

Table 1  Overview of the different interaction types included in the multi-edge input network for H. 
sapiens 

Overview of different interaction types included in the multi-edge input network for H. sapiens. The ‘letter’ column indicates 
the chosen letter to represent the interaction networks. Input networks were derived from three different databases and 
contained either directed or undirected edges. For directed edges, the number of regulators and target genes are shown

Interaction type Letter Directed #Nodes #Edges #Regulators #Targets Database

Regulatory TF-gene interactions R Yes 15,014 53,232 526 14,488 OmniPath

Regulatory miRNA-mRNA interac-
tions

M Yes 4060 11,085 850 3210 OmniPath

Homologous genes H No 4862 10,847 – – Ensembl

Protein–protein interactions P No 10,950 24,773 – – HumanNet

Co-functional interactions C No 10,682 66,373 – – HumanNet
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network and the regulatory TF-gene interaction network are counted with 26,915 
occurrences. The smallest amount of subgraphs with two edges of the same type is 
7252 and comes from miRNA-mRNA interactions, which also possess the lowest 
amount of shared subgraphs with the homologous network (826). While the interac-
tion types and quantities used in Defoort et  al. for A. thaliana and C. elegans were 
slightly different, we obtained comparable results with complex subgraphs being most 
abundant and subgraphs containing only protein–protein and homologous interac-
tions having the highest subgraph counts [28].

Next, SUBATOMIC uses SCHype to cluster the composite subgraphs into 7 module 
types. For our H. sapiens composite network, this resulted in a total number of 5586 
modules (2762 ALL, 1987 COM, 424 COR, 165 COP, 100 FFL, 78 FB2U, 44 FBU, 26 
CIR). While COM, COR, COP, FFL, FB2U, FBU and CIR are generated on mutually 
exclusive subgraph types, ALL contains a joint clustering of all types together and allows 
to find interactions between different topological modules. Hence, ALL modules were 
most abundant, followed by COM and COR modules. CIR modules are the least present. 

Fig. 2  A: Interconnection between different input networks (nodes) at the number of composite subgraphs. 
Each edge connecting two nodes represents how many subgraphs contain at least one edge from each 
network. Most subgraphs contain at least two edges from the same input networks. B: Overview of the 
counts and fractions of all detected subgraphs. C: Overview of different subgraph types detected in the 
human multi-edge network. D: Overview of different module types detected in the human multi-edge 
network. We omitted the ALL networks in C and D for visualization purposes since the ALL modules contain 
overlapping subgraphs with other module types
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With regard to the context of gene regulation, COR, COP, CIR and FFL modules are the 
most interesting ones, containing directed regulatory interactions.

Most modules are densely connected and regulated by several transcription factors 

and miRNAs

While calculating the modules, we kept track of their larger network context in the so-
called ‘superview’ analysis. This includes the interactions of modules with each other 
as well as with regulators such as miRNAs and TFs. We first analyzed the specificity of 
regulators by looking at how many modules they target. This gives insights into whether 
regulators can be considered master regulators or specific regulators. In our analysis, we 
included a total of 526 TFs and 850 miRNAs.

On average, a TF targeted 6% and a miRNA targeted 2% of all modules. A total of 
25 TFs regulated 5 or less modules, while five TFs were specific for only one module. 
Among the miRNA regulators, 90 regulated 5 or less modules while 19 only targeted one 
module. An average module is targeted by 33 TFs and 18 miRNAs. We then draw the 
degree distribution for in-degree and out-degree of the regulator-module interactions 
(Fig. 3A and B). Most modules and regulators had a low degree. The five highest degree 
modules are of FFL, CIR and ALL type. For regulators, a high degree can be interpreted 
as an indication for master regulators. Furthermore, we draw the distribution of the 

Fig. 3  Specific network properties of the regulator-modules network. A In-degree and B Out-degree 
distribution of the interactions between regulators and modules. The top 5 modules, transcription factors 
and miRNAs with the highest degree are shown with labels. In B we disrupted the axis between 1500 and 
2500. C The clustering coefficient distribution of all modules. The mode was located between 0.55 and 0.6. 
The majority of modules had a higher connectivity than the mode. D The clustering coefficient distribution 
of all modules excluding COM and ALL modules. The majority of modules had a lower connectivity than the 
mode. The visualization of the clustering coefficient for each independent module is given in Additional file 6
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clustering coefficient for all modules (Fig. 3C). We detected a mode of 0.55–0.6 in the 
clustering coefficient distribution, with the majority of modules showing a higher con-
nectivity than the mode. Since the modules were strongly dominated by COM modules, 
excluding COM and ALL modules, now the majority of modules had a lower connectiv-
ity than the mode (Fig. 3D). As the co-functional and protein–protein interactions net-
works are highly interconnected, their clustering coefficient is also very high.

Functional enrichment analysis of modules reveals unknown gene functions

Upon functional GO ontology enrichment analysis, 3805 modules have a list of enriched 
GO terms. We can capitalize on these functional annotations by generating hypotheses 
on gene functions for genes that are not well-characterized based on the guilt-by-associ-
ation or guild-by-rewiring principle [51, 52]. Although most genes in our H. sapiens net-
work are well-annotated and connected to many GO terms, 1404 genes have less than 
five GO terms and 345 have no GO term at all (Fig. 4). Limiting ourselves to protein-
coding genes, we found 53 genes in the modules that were annotated with merely two 
or less GO terms, further referenced as ‘weakly characterized genes’, 25 of which had 
no GO term at all. (See supplement for a complete list of un-annotated genes and their 
module context). Several of these genes were present in well-annotated modules and we 
could predict their biological function in relation to the GO annotation and structure of 
the module. We selected five genes without current GO annotation for further analysis: 
the proline and serine-rich protein 1 (PROSER1), the cyclic nucleotide-binding domain-
containing protein 1 (CNBD1), the leucine, glutamate and lysine rich 1 gene (LEKR1), 
the RIIa domain-containing protein 1 (RIIAD1), and the glutamate-rich protein 6B 
(ERICH6B) (Fig.  5). The gene PROSER1 (ENSG00000120685) appears in the modules 
ALL_1135, ALL_1880 and ALL_2888. The latter consists of a protein–protein complex 
of eight genes. The top 5 enriched terms are MLL3/4 complex, histone methyltrans-
ferase activity (H3-K4 specific), Set1C/COMPASS complex, histone H3-K4 methylation 

Fig. 4  Distribution of GO annotations for all genes included in the composite H. sapiens network. While the 
majority of genes is well-annotated, 345, 245, 181, 210, 256 and 167 genes have zero, one, two three, four and 
five GO terms, respectively. A total of 319 genes have more than 1000 GO-annotations and were stacked at 
the last bin. The histogram was generated with a bin size of 5
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and histone methyltransferase complex. The histone methyltransferase complex GO 
term is shared by 6 out of 8 module genes. PROSER1 is directly connected to the his-
tone methyltransferase KMT2 as well as to the PAXIP1 known to be involved in histone 
H3-K4 methylation [53]. Thus, we hypothesized that PROSER1 is part of a histone meth-
ylation complex. After our analysis, a recently published work confirmed the PROSER1s 
involvement in the regulation of various chromatin-associated proteins [54]. Next, we 
analyzed CNBD1 (ENSG00000176571). This gene appeared in the modules ALL_654 
and COM_667. The top 5 enriched terms in COM_667 are HCN channel complex, intra-
cellular cAMP-activated cation channel activity, intracellular cyclic nucleotide activated 
cation channel complex, intracellular cyclic nucleotide activated cation channel activity 
and cyclic nucleotide-gated ion channel activity. It is connected via co-functional edges 
to CNGB1, CNGA1 CNGA3, and CNGA4. All four are subunits of the cyclic nucleotide 
gated channel (CNGA) and appear in all of the top 5 enriched terms except for the HCN 
channel complex. Thus, we hypothesized that CNBD1 is also part of a cation channel 
complex and possesses cation channel activity. The LEKR1 (ENSG00000197980) gene 
appears in the modules ALL_3385 and FB2U_87. While ALL_3385 had no significant 
enrichment, the top 5 enriched terms in FBU_87 were cellular components muscle 

Fig. 5  Gene function prediction for poorly functionally characterized genes based on their module context. 
Based on the guilt-by-association principle, we created hypotheses on the biological function of these genes 
based on their module context. We derived function predictions for PROSER1, CNBD1, LEKR1, ERICH6B and 
RIIAD1
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myosin complex, dynactin complex, myosin filament, myosin II complex and sarcomere. 
It is connected with MYH2, which is also annotated with all significant terms except the 
dynactin complex. While we cannot derive a specific function for LEKR1, we can hypoth-
esize that it plays a role in the myosin complex. The ERICH6B (ENSG00000165837) 
gene appears in ALL_1153 and COM_1252. The top 5 enriched terms are the molecular 
functions metallocarboxypeptidase activity, carboxypeptidase activity, metalloexopepti-
dase activity, exopeptidase activity, as well as the biological process protein processing. 
It has protein–protein interactions with four proteins, of which the carboxypeptidase 
D (CPD) is part of all enriched GO terms in this module, and the succinate–CoA ligase 
SUCLG2 is part of the cellular amide metabolic process. Although the function remains 
rather broad, we can hypothesize that this gene is involved in the amide metabolic pro-
cess. Finally, the RIIAD1 (ENSG00000178796) gene appears in the modules ALL_331 
and COM_380. The top 5 enriched terms in ALL_331 are sperm capacitation, sperm 
motility, flagellated sperm motility, cilium movement involved in cell motility and cilium 
or flagellum-dependent cell motility. Five out of nine genes are annotated with a cellular 
component of the motile cilium. We can hypothesize that RIIAD1 is involved in sperm 
motility. In fact, a recent paper mentioned RIIAD1 as co-expressed with the a-kinase 
anchor protein 3AKAP3, a gene whose knockdown was shown to induce infertility in 
male mice [55, 56]. A visualization of the top 30 enriched terms and an overview of GO 
terms is available in Additional files 2 and 6.

Dynamic modules are associated with hypoxia in three cancer cell lines

Hypoxia can lead to a variety of different responses in which cells can develop tolerance 
to severe tissue damage and might in turn promote aggressive cancer phenotypes [57, 
58]. Such damaged cells can be embedded in the tumor microenvironment and influ-
ence treatment effectiveness [58, 59]. To contextualize the results obtained with SUBA-
TOMIC, we chose a study that investigated the influence of cycling and chronic hypoxia 
on gene expression in melanoma (WM793B), ovarian cancer (SK-OV-3), and prostate 
cancer cell lines (PC-3) [58]. Chronic hypoxia is characterized by a permanent oxygen 
depletion and was modeled in the study with a permanent ambient oxygen concentra-
tion of 1%. In cyclic hypoxia, the availability of oxygen varied between 1 and 21% oxygen 
with a switch at six different time points. A permanent oxygen concentration of 21% 
was used as a control condition. We chose two main prioritization schemes to select 
modules potentially involved in hypoxia: one based on enriched GO terms and the other 
based on expression data.

We first filtered all modules based on at least one enrichment for a GO term contain-
ing the ‘hypoxia’ key word (Additional file 3). Hence, we identified 78 modules, further 
referenced as the ‘hypoxia GO set’. We then investigated how tightly connected this set 
of modules was in the superview analysis (Table 2). We used the number of interactions 
between modules in our selected set and compared it against a background of 1000 ran-
domly selected sets of modules of the same set size. This allowed us to see whether mod-
ules in the ‘hypoxia GO set’ are more connected than expected by chance. We calculated 
the upper boundary of a 95% confidence interval on the mean and standard deviation 
of the random set and a fold change comparing the interactions from the ‘hypoxia GO 
set’ with this upper boundary. We observed that modules of the ‘hypoxia GO set’ have 
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about 18 times more edges between pairs of modules inside this set than random. Espe-
cially regulatory edges such as TF-target interactions and miRNA-mRNA interactions 
between these modules are respectively 21 and 19 times more often observed than 
expected by chance. This revealed a strong connection between those modules, indicat-
ing complex regulatory mechanisms behind hypoxia. Next, we investigated whether the 
‘hypoxia GO set’ compared to other modules was enriched for significantly differentially 
expressed (DE) genes in chronic hypoxia with a minimum fold change greater than two. 
We did not apply this to cyclic hypoxia because the number of DE genes was quite low. 
A hypergeometric test was used comparing DE genes appearing inside the ‘hypoxia GO 
set’ with DE genes appearing in all other modules. We found a significant overexpression 
of DE genes in all the cell lines: WB793B (fold change 16.99, p-value 3.54E-38), PC3 (fold 
change 9.58, p-value 1.47E-36) and SK-OV-3 (fold change 7.74, p-value 1.43E-30). These 
results highlight that with a combination of superview analysis and functional annota-
tion, we can already filter for condition-specific modules even without expression data 
integration.

Subsequently, we took a closer look at three selected modules in the ‘hypoxia GO set’ 
(Fig. 6). For example, the module COM_256 resembles a co-functional protein complex 
that has 68 enriched GO terms including the most enriched hydroxylysine metabolic 
process, peptidyl-proline 4-dioxygenase activity as well as L-ascorbic acid binding (see 
supplement for full list of enriched GO terms). Five out of twelve genes are involved 
in response to hypoxia as well as response to decreased oxygen levels. The module is 
mostly regulated by three TFs: androgen receptor (AR), hypoxia inducible factor 1 
subunit alpha (HIF1A) and endothelial PAS domain protein 1 (EPAS1), also known as 
hypoxia-inducible factor 2-alpha. HIF1A and EPAS1 are known to facilitate cellular 
adaptation to hypoxia and regulate many hypoxia-related genes in a variety of tissues 
[60–64]. Also, AR was shown to act as ligand-dependent TFs that confer to resistance 
against AR-targeted cancer therapies under hypoxic conditions [65, 66]. Many mod-
ule genes were differentially expressed, namely the procollagen-lysine,2-oxoglutarate 
5-dioxygenase 1 and 2 (PLOD1, PLOD2), the prolyl hydroxylase (EGLN3), as well as pro-
lyl 4-hydroxylase subunits alpha 1 and 2 (P4HA1) and (P4HA2). PLOD1 and PLOD2 
were shown to be involved in hypoxia-induced metastasis and glioblastoma tumor pro-
gression [63, 67]. EGLN3, which was upregulated in the chronic state in the SK-OV-3 
cell line, catalyzes oxygen-dependent hydroxylation of the hypoxia induced factor (HIF) 

Table 2  Modules in the ‘hypoxia GO set’ show higher interconnectivity than expected by chance

We calculated mean, standard deviation and a 95% confidence interval based on a distribution of 1000 randomly sampled 
sets of modules. Confidence up = upper boundary of the confidence interval, Confidence down = lower boundary of the 
confidence interval, Fold change = comparison of the number of superview interactions in the ‘hypoxia GO set’ with the 
upper boundary of the random distribution. We observed a high fold change for all edge types in the ‘hypoxia GO set’

Edge type Hypoxia GO set Random mean Random std Confidence 
down

Confidence up Fold Change

M-type 490 22 24 21 24 21

R-type 27,476 1425 780 1377 1474 19

H-type 428 17 85 12 23 19

C-type 2772 202 216 189 216 13

P-type 872 52 70 48 57 15

Total 32,038 1720 880 1665 1774 18
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[68, 69]. Other genes such as the prolyl 3-hydroxylases, P4HA1 and P4HA2 were known 
to hydroxylate the 564-proline residue in the α-subunit of HIF [70]. Hence, we con-
cluded that COM_256 is strongly involved in the reaction to hypoxia and shows a coher-
ent but slightly different expression across the three cell lines.

We then investigated the ALL_1753 module. The module contained 177 significant 
GO term enrichments including cellular response to hypoxia and cellular response 
to decreased oxygen levels for six genes. It is centered around the BCL2 Interact-
ing Protein 3 Like gene (BNIP3L), which is differentially expressed and targeted 

Fig. 6  Visualization of three superview-connected modules from the ‘hypoxia GO set’. ‘Links’ indicate how 
many superview interactions exist per type between two modules. Regulators targeting at least 5 genes that 
were not present in a specific module are shown outside the boxes. nPCC indicates the correlation of genes 
within a module in all hypoxia samples together with a z-score derived by comparing this value with random 
modules of the same size as well as an p-value and the fraction of edges in a module for which expression 
data was available for both genes. The activity score Sa was displayed for each of the three cell lines PC3, 
SK-OV-3 and WM793B. Expression is shown for all module genes for which expression values were available 
based on the hypoxia dataset (GEO: GSE53012)
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by HIF1A and EPAS1. The module contained three interesting feed forward loops, 
where HIF1A, EPAS and the forkhead box O3a FOXO3 target BNIPL3 and miR-
30d-3p that in turn also regulates BNIP3L  [73]. Moreover, miR-30d-3p is known to 
be involved in hypoxia and directly regulate AR [71]. FOXO3 is activated in response 
to hypoxic stress [72]. Another DE gene in this module is the retinoic acid receptor-
related orphan receptor (RORA), regulated by HIF1A and EPAS1. RORA is known to 
be induced by HIF1A and it plays a role in the nuclear accumulation of HIF1A [74]. 
Finally, miR-221 regulated FOXO3, BNIPL3, the bcl-2-binding component 3 (BBC3) 
and the apoptosis regulator BAX and exerted cytoprotective effects in hypoxia-reox-
ygenation injury [75]. Hence, we concluded a strong involvement of ALL_1753 in 
response to hypoxia and that the hypoxia response of BNIPL3 might be driven by the 
involvement of three regulatory feed forward loops.

At last, we investigated the ALL_2269 module. The module was enriched for 85 
GO terms including the most enriched terms carnitine shuttle and carnitine O-pal-
mitoyltransferase activity for two and three genes as well as positive regulation of 
fatty acid metabolic process that involved half of the module genes. The response 
to hypoxia and decreased oxygen levels was enriched due to the presence of three 
module genes. The module is centered by three homologous peroxisome proliferator-
activated receptors, PPARG, PPARA and PPARD. Especially PPARG was shown to 
be activated under hypoxic conditions in correlation with HIF1A in lung cancer and 
hepatocellular carcinoma [76, 77]. It regulated the differentially expressed gene car-
nitine palmitoyltransferase 1A (CPT1A) and its homolog CPT1B, shown to regulate 
prostate cancer growth under hypoxic conditions [78]. While this module does not 
show strong dysregulation in the three analyzed cancer types, it contained genes and 
interactions highly relevant in reaction to hypoxia, as demonstrated in other studies.

All three modules were connected by many edges in the superview and shared a 
similar set of regulators. We demonstrated that the modules found by our GO term 
based approach are highly relevant in the hypoxia context, which is supported by the 
increased amount of hypoxia-specific DE genes. In the modules we identified regula-
tory structures such as feed forward loops involving interactions from complemen-
tary omics layers that help to explain and interpret the observed expression and allow 
to generate mechanistic hypotheses for hypoxia-induced mechanisms.

In a second prioritization approach, we wanted to use the dynamic response of 
genes towards a stimulus or condition as selection criteria (Additional file  4). We 
implemented a ‘module activity’ Sa approach that can capture the response of modules 
to a changing condition, for example based on differential expression data between 
two conditions [79] (see also methods). To find a set of highly hypoxia-related mod-
ules, we filtered for modules with a positive activity score Sa in all three cell lines. This 
resulted in a set of 52 modules that we further refer to as the ‘hypoxia activity set’. 
Next, we analyzed the superview connections within the ALL modules in the same 
way as for the ‘hypoxia GO set’ (Table 3). We observed a 28 times higher connectivity 
between the activity modules as compared to random sets of the same size. While the 
number of interactions for M-type and R-type interactions was similar to the ‘hypoxia 
GO set’, the undirected interaction types H, C and P were much more enriched with 
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a 90, 69 and 88 times higher number of connections, respectively. Furthermore, the 
‘hypoxia GO set’, and the ‘hypoxia activity set’ have 12 modules in common.

We then inspected three modules identified in the activity hypoxia set with regard to 
their relevance for hypoxia (Fig. 7).

The COR_347 module is dominated by HIF1A and MYC, each regulating 6 targets. 
The module contained 159 significant GO term enrichments including cellular response 
to hypoxia and cellular response to decreased oxygen levels for four and three genes, 
respectively. Besides HIF1A and the MYC proto-oncogene (MYC), the module is regu-
lated by the fos proto-oncogene (FOS) with six regulatory interactions. MYC is one of 
the master regulators targeting 46% of all modules. It plays an important role in the 
development of cancer and regulates members of the hypoxia inducing factor protein 
family [80]. The hexokinase 2 gene (HK2) is regulated by MYC and HIF1A and shows 
dysregulation in the expression data. It was recently shown to be an important target of 
HIF1A in an oxygen-reduced environment [81].

ALL_2896 mostly contained COR and FFL subgraphs dominated by HIF1A. It was 
enriched for 11 GO annotations including procollagen-proline 4-dioxygenase activity 
and peptidyl-proline 4-dioxygenase activity. HIF1A regulated the differentially expressed 
gene P4HA1, which also occurred in COM_256 in the ‘hypoxia GO set’ in a co-regu-
latory manner with the prolyl 4-hydroxylase beta polypeptide gene (P4HB). Another 
regulator in this module was the signal transducer and activator of transcription 1 gene 
(STAT1). It regulated the sperm associated antigen 4 (SPAG4) together with HIF1A. 
While SPAG4 was not differentially expressed with a fold change greater than two, we 
still observed a consistent reduction in expression across all three cell lines.

ALL_2093 is enriched for 331 GO terms. The most enriched terms included regula-
tion of metanephric cap mesenchymal cell proliferation and negative regulation of leu-
kocyte adhesion to arterial endothelial cells, however the most enriched 15 terms only 
contained one gene. The response to hypoxia as well as to decreased oxygen levels 
included six genes. The module mostly consisted of COR and FFL subgraphs. Many of 
its genes connected to hypoxia already appeared in the modules described above, such 
as AR, MYC, HK2, STAT1 and PPARA. Another interesting gene is the krüppel-like fac-
tor 4 (KLF4). It was differentially expressed together with its target 6-Phosphofructo-
2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3), which in turn is also regulated by 

Table 3  ‘Modules in the ‘hypoxia activity set’ show higher interconnectivity than expected by 
chance

We calculated mean, standard deviation and a 95% confidence interval based on a distribution of 1000 randomly sampled 
sets of modules. Confidence up = upper boundary of the confidence interval, Confidence down = lower boundary of the 
confidence interval, Fold change = comparison of the number of superview interactions in the ‘hypoxia GO set’ with the 
upper boundary of the random distribution. We observed a high fold change for all edge types in the ‘hypoxia GO set’

Edge type Hypoxia Random mean Random std Confidence 
down

Confidence up Fold change

M-type 134 7 9 6 7 18

R-type 8494 458 330 437 478 18

H-type 624 5 25 4 7 90

C-type 5008 66 112 59 73 69

P-type 1676 17 35 15 19 88

Total 15,936 552 370 529 575 28
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STAT and MYC. KLF4 was shown to be involved in Hypoxia-induced vascular smooth 
muscle cell migration [82]. However, while PFKFB3 is differentially expressed in PC-3 
and SK-OV-3 cell lines, KLF4 is only significantly overexpressed in PC-3. Besides regu-
lation via STAT1 and MYC, the PFKFB3 promotor also contains HIF1A binding sites 
and might not be dependent on KLF4 as an activator to be overexpressed under hypoxic 
conditions [83]. Furthermore, fibronectin 1 (FN1) is overexpressed and regulated by 

Fig. 7  Visualization of three superview connected modules from the ‘hypoxia activity set’. ‘Links’ indicate 
how many superview interactions exist per type between two modules. Regulators targeting at least 5 genes 
that were not clustered in a specific module are shown at its top. nPCC indicates the correlation of genes 
within a module in all hypoxia samples together with a z-score derived by comparing this value with random 
modules of the same size as well as an p-value and the fraction of edges in a module for which expression 
data was available for both genes. The activity score Sa was displayed for each of the three cell lines PC3, 
SK-OV-3 and WM793B. Expression is shown for all module genes for which expression values were available
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two FFLs including AR, SP1 and miR-1-3p. The latter was show to be downregulated 
under hypoxic conditions in mouse lung tissues [84]. The specificity protein 1 (SP1) was 
described to also be regulated by HIF1A directly and is required for hypoxia-induced 
transcription of other downstream genes [85].

Module stability analysis

To assess the stability of the modules with regard to missing edges, we designed a re-
sampling approach [86]. Given the full network as a base, we sampled 90%, 80%, …, 10% 
of edges without replacement from the set of interactions and re-run the SUBATOMIC 
pipeline on each of the reduced sets. We then removed the non-sampled edges from the 
modules of the full network to create a set of ground truth modules and calculated the 
module overlap based on the reduced networks. This allowed us to quantify the stability 
of the modules with regard to missing edges. To account for the randomness of the sam-
pling process, we repeated each sampling ten times. We observed that with this amount 
of re-sampling, we get a stable output with regard to variance. We utilized three different 
metrics to compare the clusters to their ground truth: Jaccard Index (JI), Adjusted Rand 
Index (ARI) and the adjusted mutual information (AMI) [87–89]. For each module in 
our down-sampled set, we retrieved the maximum score in comparison to the ground 
truth and visualized the mean within a boxplot for each set (Fig. 8A, Additional file 8). In 
this way, when modules were merged or split up compared to the full network, only the 
module with the highest score was considered. While the scores were relatively stable 
between runs keeping 90%, 80% and 70% of the edges, the more edges were removed, the 
faster the scoring decreased. This trend was observed within all three scoring metrics. 
Since the variance was stable in-between runs, we then selected one of the 10 runs for 
each down sampling and visualized the distribution of scores in a violin plot (Fig. 8B). 
We observed a general increasing number of higher scores when adding more edges. 
Similar to the boxplots, we see that the violins of 90%, 80% and 70% of the edges were 
very similar to each other. We observed comparable results when using AMI or JI as 
metric in the comparison. In summary, our approach showed that modules are relatively 
stable when leaving out interactions, and similar modules are formed in the process. We 

Fig. 8  A: Boxplots representing the average Adjusted Mutual Information score (AMI) for each subsampled 
set. Each box summarizes the results of 10 independent SUBATOMIC runs per 10%, 20%, …, 90% of 
interactions sampled from the full network. The orange line inside each box represents the average AMI for 
the 10 repetitions. B: Violin plot representing the distribution of one selected run. The width of each violin 
indicates how many values were present for a certain AMI value
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further analyzed the nPCC values calculated for the hypoxia dataset (Additional file 8). 
About 24% of all clusters had significant correlation of expression in-between module 
genes, further showing that derived SUBATOMIC modules are well-separated and sup-
ported by orthogonal expression data.

Discussion
We developed SUBATOMIC, an integration pipeline that decomposes multi-omics net-
works into topological modules and their interactions using composite subgraph cluster-
ing and statistical and functional analysis. The obtained modules are further embedded 
within their network and regulator context in a superview analysis as well as function-
ally annotated and visualized. In a post-processing step, we contextualized the obtained 
modules with condition-specific data in three hypoxia cell lines and calculated activity as 
well as expression correlation scores. Compared to our previous integration framework, 
SUBATOMIC contains major improvements [28]. Most importantly, we automated the 
workflow and integrated it into a general Snakemake pipeline. While the previous ver-
sion was generated for one use case only, we now can perform the analysis workflow 
from decomposing a composite network up to the analysis of modules in one single exe-
cution. Moreover, it is applicable to multi-edge networks of any species. We adapted the 
superview analysis to output a summary of connections between modules and regula-
tors. We also improved upon the functional characterization of modules by automating 
GO term enrichment. Since run-time can be an issue on large interaction networks, we 
parallelized time-critical steps in the pipeline and improved scalability and computabil-
ity. Moreover, we added scripts to support the visualization of modules in Cytoscape. 
To calculate condition-specific activity of modules, we developed a post-processing step 
that calculates a biological activity score.

We applied SUBATOMIC to a composite network consisting of human TF-target 
gene, miRNA-mRNA, protein–protein, co-functional and homologous interactions. 
Our approach yielded 5586 modules. The majority of modules were enriched for GO 
terms, demonstrating that module topology and biological function are closely interre-
lated, since clustering was performed on topological features. Most modules obtained 
were COM modules, made up of undirected edges. This is expected because we included 
more undirected than directed interactions. Moreover, we observed that in most of the 
cases the interactions in a three-node subgraph came more often from the same input 
network rather than from different networks. This is due to the fact that the input net-
works do not possess exactly the same set of nodes and can also have a different number 
of interactions. Instead of using the full HumanNet database, we included only high-
quality interactions with a log-likelihood score greater than three. This balances the 
number of interactions to a comparable amount by setting cut-offs on quality values.

Given the modules and their functional annotation, we demonstrated how SUBA-
TOMIC can be used to predict the function of unannotated genes. Out of 53 weakly 
annotated genes that also appeared in the inferred modules, we selected PROSER1, 
CNBD1, LEK1, RIIAD1 and ERICH6B for an in-depth analysis. While some of our 
predictions, such as the chromatin modification role of PROSER1 are very novel, oth-
ers were supported by recent publications such as the potential involvement of RIIAD1 
in sperm motility. However, functional characterization based on guild-by-association 
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principle generates guiding functional hypotheses that still need experimental 
conformation.

In the case of contextualized modules, we put forward two prioritization strate-
gies: either through enrichment of related GO terms or the module activity score. We 
showed that modules that share GO terms, such as hypoxia, are strongly intercon-
nected and accumulate DE genes for related conditions. Also, genes not annotated 
with the specific GO terms but relevant for the condition can be detected due to close 
distances inside one module. However, when genes are not well characterized or do 
lack specific GO key words linking them to a condition, a GO term-based prioritiza-
tion strategy might miss out on important modules. We further developed a more 
data-driven prioritization scheme by implementing module activity based on dif-
ferential expression data. Using the activity score, we found a small set of modules 
relevant in the hypoxia context. This set was strongly interconnected and partially 
overlapped with the GO term based set of genes. While modules on itself show a 
static view and give insights on what is possible in an organism, contextualizing adds 
condition-specific dynamicity. For example, despite the fact that one of the main driv-
ing hypoxia genes HIF1A was not present in the most current probe annotation for 
the expression array from the hypoxia study, it was detected in many modules based 
on GO term annotation and activity. Especially genes targeted by HIF1A revealed 
high differential expression in HIF1A-containing modules. Our results indicate that 
we can prioritize the large amount of modules in different ways to end up with sets 
of modules highly relevant for a condition or disease context. With the activity pri-
oritization method, we were able to find modules with different topologies strongly 
connected in the superview. We showed that many genes in these modules are already 
known to play important roles in hypoxia. Moreover, contextualizing the modules 
with expression data from three different cell lines revealed that the activation of 
response mechanisms can differ and that different parts of a module can be active in 
different tissues. For example, EGLN3 is a known hypoxia-induced factor and showed 
dysregulation only in the SK-OV-3 cell line (see COM_256). In ALL_2093, KLF4 is 
only weakly expressed in WM793B while its target PFKB3 is strongly expressed in 
all three cell lines under hypoxic conditions; thus other regulators such as MYC and 
STAT also targeting PFKB3 might have a stronger regulatory influence. Overall, the 
combination of annotated SUBATOMIC modules based on different topologies, their 
superview connections, their contextualization with expression data and their visu-
alization among different conditions and cell lines delivers a versatile tool to deeply 
investigate multi-edge networks.

SUBTATOMIC is not limited to the data types described in this study and offers 
additional analysis opportunities. While we restricted our analysis to genes and miR-
NAs, it is possible to add any type of nodes and interactions such as metabolite inter-
actions, lncRNA interactions, or siRNA interactions, as long as the input networks 
share a common set of nodes for intersection. Moreover, while we used a static prior 
network that was contextualized in a later step to add dynamicity, it is possible to 
directly analyze a dynamic composite network by including condition- or patient spe-
cific association networks inferred from context-specific high-throughput data such 
as transcriptomics or proteomics, e.g. co-expression networks at either bulk or single 
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cell level. Also, hybrid approaches are possible, combining public databases for some 
interaction types with condition-specific interactions for others.

To evaluate our modules from a clustering perspective, we designed a re-sampling 
approach where we randomly removed a fixed number of edges over ten repetitions 
for nine different sampling fractions (10–90%). We showed that modules remain sta-
ble when removing a small percentage of edges but become less and less stable when 
removing more. This trend was confirmed by using three different metrics when com-
paring modules of sampled networks with the full network. Since modules are strongly 
influenced by the size and completeness of the input prior network, the analysis also 
demonstrated that there is a saturation effect in stability when adding more edges, since 
the differences in average ARI between adjacent sampling points were decreasing while 
adding more edges. However, not every module could be found back in the sub-sampled 
modules. This is expected since some edges might be essential to connect two parts of a 
module, and when removed the module might split into two. Since clustering was done 
on two-node and three-node hypergraphs, nodes could appear in several modules. To 
avoid comparing non-related modules, we decided to only include the best pairwise ARI 
between the ground truth and subsampled modules to assess clustering stability. Fur-
thermore, stability was supported by a large amount of modules with significant nPCC 
values as well as a high number of modules with significantly enriched GO terms. Thus, 
we can conclude that SUBATOMIC predicts modules in a stable manner.

Broadly, two main distinctions can be made when it comes to module inference: on 
the one hand, methods generate modules directly from experimental read-outs such 
as expression data, or use prior networks as a base for the inference. On the other 
hand, clustering can be based on only one data modality or include multiple ones. 
Methods such as WGCNA, lmQCM, MiBiOmics and TPSC are examples of meth-
ods that generate expression based co-expression clusters [38, 90–92]. While they are 
widely used and are shown to produce modules that correlate to many biological fea-
tures, these modules are often very large, do not consider causal regulatory interac-
tions, or have no multi-omics data integration. Other methods go one step further 
and additionally integrate protein–protein interactions [41, 93, 94]. The method of 
Dittrich et al. combines clustering on expression data with protein–protein interac-
tion networks to derive modules that represent merged, overlapping and independent 
communities [95]. While the classification of modules in independent, overlapping 
and merging communities already give some network context to the clusters, it is not 
as flexible with the input data and they did not consider directionality of interactions 
and the clustering yielded only a small number of modules. The Multi-omics Module 
Analysis Method (MOMA) uses a deep learning approach to derive omics-specific 
module representations which are further integrated within an attention layer to find 
relevant modules for disease prediction [96]. Sparse Multiple Canonical Correlation 
Network Analysis (SmCCNet) derives a few large modules to connect omics meas-
urements with specific phenotypes [97]. Another class of methods tries to use static 
prior networks as a base and uses expression data in a contextualization step to find 
active subnetworks [97–99]. For example, the connect separate connected compo-
nents (C3) modularizes a network into disease-relevant modules by iteratively con-
necting sub-networks made of a small number of disease-associated proteins [100]. 
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DeRegNet combines prior regulatory networks with omics abundance measurements 
to identify maximally deregulated subnetworks [101]. Some more of these methods 
and strategies have been further reviewed by other authors [39, 102–104]. Compared 
to existing methods, SUBATOMIC tries to address open issues and creates a compre-
hensive analysis framework covering various aspects of module inference (see Addi-
tional file 8 that further shows a tabular comparison of the features in-between the 
here mentioned module inference methods and SUBATOMIC.)

It is based on a topological clustering approach that allows to interpret clausal rela-
tionships between gene and emphasizes different regulatory mechanisms. It intro-
duces flexibility allowing for operation on literature-defined prior networks as well 
as on omics-derived association networks. Moreover, it can include all types of nodes 
and biological interactions in an integrated manner. Networks are divided into a large 
number of small and interpretable modules with district topological properties, while 
still keeping track of their global network context and regulators. Furthermore, static 
network modules can be inferred and contextualized with expression data using ECD, 
nPCC and module activity scores. This combination makes it a unique and outstand-
ing method in the field of composite network clustering.

While SUBATOMIC was shown to be able to answer many biological questions, it also 
comes with some limitations. Input prior networks are often incomplete and might com-
plicate biological interpretation. However, we expect that interaction databases continu-
ously grow, and thus multi-edge networks will become more and more complete, and 
our stability analysis further demonstrated that modules remain stable when confronted 
with missing interactions. Furthermore, if networks do not overlap for a certain quantity 
of nodes, the derived subgraphs will mostly assemble in modules from separated inter-
action types. Also this issue will be solved with a growing amount of databases. Another 
limit is computability. We used SCHype for our clustering algorithm and demonstrated 
that it was able to process more than 750,000 subgraphs in an adequate amount of time. 
However, the number of detected subgraphs grows super-linear with larger networks. 
Thus, there exists an upper limit in network size that is still computable. Furthermore, 
while we parallelized GOATOOLS to annotate several modules at a time, the gain of 
computational speed was accompanied by an increase in space consumption. This lim-
its the number of cores that can be used for parallelization. This will be addressed in a 
future version integrating a more space-efficient annotation tool.

Conclusion
In conclusion, we developed an automated subgraph clustering framework that takes 
basic building blocks of interactions and clusters them into modules. The modules are 
further characterized and contextualized by superview calculation, regulator analysis, 
GO term enrichment, and module activity scoring. SUBATOMIC can be used to inves-
tigate conditions and diseases, find interactions between functionally related modules, 
and derive novel gene functions for uncharacterized genes. The main limiting factor is 
the availability of interconnected networks. We believe this issue will be solved in time 
with an ever-increasing number of interactions being discovered. Our approach distin-
guishes itself from other module inference methods by clustering based on topological 
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features to create a high number of small and easily interpretable modules with different 
regulatory properties, while still keeping the overall network context in mind.

Methods
The main analysis workflow has been integrated into one Snakemake pipeline. A 
Snakemake workflow diagram is available in the Additional file  7, and a schematic 
overview can be found in Fig.  1. All software, including some scripts for pre- and 
post-processing analysis, as well as a Docker version are made available on GitHub 
(https://​github.​com/​CBIGR/​SUBAT​OMIC).

Subgraph detection

For subgraph detection, we used the ‘Index-based subgraph algorithm’ (ISMAGS) 
[44, 105]. We followed the subgraph representation used in ISMAGS, where a three-
node subgraph is represented as a three letter code, which specifies that a given edge 
originates from a certain set of input interactions. Interactions in one input network 
need to be either all directed or all undirected (e.g. all interactions in a TF-target 
network should be directed; all interactions in a protein–protein network should be 
un-directed, …). Each input network is characterized by a unique one-letter represen-
tation that can be freely chosen by the user. As an example, the subgraph RRP would 
contain one directed edge from network R, another directed edge from network R 
as well as an undirected edge from the protein–protein interaction network. A let-
ter for a directed network can be set to lower case to indicate that the direction is 
reversed (see ISMAGS paper [44]). Due to symmetry, some subgraphs are redundant 
to one another (e.g., PPC, PCP and CPP represent the same subgraph). A custom-
made script calculated a non-redundant set of subgraph representations based on a 
provided list of directed and undirected network letters. This set is then used by the 
pipeline as a guide to search for subgraphs and can be further fine-tuned by the user 
to remove additional unwanted subgraphs. The three-node subgraphs were then iden-
tified by ISMAGS [44]. ISMAGS takes for each iteration the three-letter subgraph 
representation and the parts of the composite network that contain interactions for 
this subgraph. It outputs all three-node subgraphs that satisfy the defined representa-
tion. Besides three-node subgraphs, we also searched for two-node subgraphs that 
possess special properties: i.e., all pairs of nodes where each node contains a directed 
edge pointing at the other node (DD-type) and all pair of nodes connected by one 
undirected and one directed edge (DU-type).

Subgraph clustering and module inference

The subgraphs produced by ISMAGS were subsequently grouped into one of the 
following subgraph types: complex subgraphs (COM), feed forward loop (FFL), 
co-pointing subgraphs (COP), co-regulated subgraphs (COR), circular feedback 
subgraph (CIR), feedback undirected subgraph (FBU) and feedback 2 undirected sub-
graph (FB2U) and two-node feedback subgraph (2FB) [28]. Each of these subgraph 
types is characterized by a unique combination of directed and undirected edges as 

https://github.com/CBIGR/SUBATOMIC
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visualized in Fig.  1. For example, the COM type contains all subgraphs that exclu-
sively consist of undirected edges. Given the undirected network letters C, P and H, 
any combination of these three letters that led to a set of non-redundant subgraphs 
was grouped together into the COM type. Each module type consists of specific sub-
graphs types and served as the input for the following clustering.

We inferred clusters for each of the above defined subgraph types separately as well 
as on the union of all classes (ALL) using the SCHype algorithm [45]. This algorithm 
is based on the Perron-Frobenius theorem, and clusters a hypergraph solving an opti-
mization problem by maximizing the edge-to-node ratio in each cluster for a network 
[106]. The input is a hypergraph, were each hypernode represents a three-node sub-
graph calculated by ISMAGS or a two-node subgraph. SCHype was run with default 
settings (p = 1) and output several modules for each of the eight classes of modules 
and for clustering all subgraphs together. These modules were further filtered for sub-
sequent analysis: clusters containing 5–50 genes were kept and modules containing 
more than 90% of homologous edges were excluded.

Superview calculation

The superview step characterizes interactions between modules as well as between 
regulators and modules. Each module was compared to every other module by count-
ing how many edges per input network were shared between those two modules. 
This value was compared against the shared edge count in a random sampling. In 
the sampling, we generated 1000 times two random modules, both having an equiva-
lent amount of nodes as the two modules under investigation. The derived distribu-
tion was used for a z-score transformation with z = x−µ

σ
 given the mean µ and the 

standard deviation σ from the random distribution. The z-score was further evaluated 
by calculating a p-value (significance cut-off: 0.05) for that distribution with a right 
tailed-test 1− CDF(z) where CDF  is the cumulative distribution function. The output 
was composed of one file per module type (ALL, COM, COR, …) containing interac-
tions between every module of this type and all other modules for each input network 
and displayed the count of shared interactions, z-score, and p-value. If no interactions 
exist between the two modules, the z-score was set to 0 and the p-value was set to 1.

The superview calculated three more outputs that characterized the relationship 
between modules and regulators. For each regulator (TF or miRNA), we calculated 
the RF-module connection strength for each RF-module pair and each interaction 
type with 1

|N |
ni∈N

ni with N being all module genes and ni = 1 if an edge exist, else 

x = 0 . This gave a fraction on how many interactions between a TF and a module 
existed and was used to find regulators that are strongly connected to a module or a 
set of modules. Another analysis displayed the fraction how many distinct TFs or 
miRNAs target one particular module for each module with no.regulator−moduleinteractions

totalnumberregulators
 . 

This gave a module-specificity and allowed to investigate whether a module was tar-
geted by a few or many regulators. Another analysis displayed how many modules are 
targeted by a certain regulator and shows a fraction of how this compared to the total 
number of derived modules. For each regulator, we calculated the regulator specificity 
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by no.targetedmodule
totalnumberofmodules

 , which allowed to investigate which TFs and miRNAs targeted a 
wide range of modules, as opposed to some that were specific for a single module or a 
small number of modules.

Functional enrichment analysis

For each module, SUBATOMIC performed a functional enrichment to gain insights into 
its biological relevance. We used the Python implementation of GOATOOLS to cal-
culate the enrichment of GO terms for each module [46]. We provided three options 
as enrichment background: all genes present in one specific type of modules, all genes 
present in the input networks, or all genes written in a user-specified file. For our anal-
yses we used a user-defined input containing all annotated human genes according to 
Ensembl as input. Results were summarized in one file per module. Only results with 
a corrected p-value > 0.05 were kept based on Benjamini and Hochberg FDR correc-
tion [107]. Additionally to the standard GOATOOLS output, we provided a rank for the 
ascendingly sorted p-values for each module, since p-values can strongly differ between 
modules and enriched functionality depends on which processes are well annotated as 
well as how many GO terms are available. The rank allowed to filter for the top n entries 
per module. We further reported the log2 fold-change for each significant GO term.

Visualization

To visualize the modules in Cytoscape, we provide a number of files that can be 
imported. The most important file is a nnf file containing the network representation of 
the modules. Additionally, we generated a noa file to annotate each node with its type 
(TF, gene or miRNA), its gene name, and a short optional functional description. Each 
run of the pipeline also resulted in a Cytoscape style sheet in xml format to format the 
network in a way consistent with the provided information in nnf and noa file format, 
that can as well be imported. The xml file can also be adapted for more customized style 
choices.

Run time considerations

Operations on graphs often come with a high computational cost. Several steps in the 
pipeline were parallelized, but some bottlenecks remain. The subgraph detection algo-
rithm is highly efficient and can find millions of subgraphs in less than a minute. SCHype 
can cluster hundreds of thousands of subgraphs, but its run time increases super-linear. 
Furthermore, the superview calculation comparing all modules against each other and 
the functional annotation are the most time-consuming steps. Since these steps pro-
cess one module at a time, we parallelized them in a way that each module can be pro-
cessed by a different core. In principle, as many modules can be processed in parallel as 
there are cores available. However, since each separate process needs a certain amount 
of memory, a careful balance between the number of cores available and the amount 
of memory must be taken in order to find a suited number of cores for parallelization. 
For our application on a H. sapiens composite network, we ran SUBATOMIC limited 
to eight cores and 70 GB RAM on a 2 × 18-core Intel Xeon Gold 6240 (Cascade Lake @ 
2.6 GHz) processor, which resulted in two days of run time.
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Construction of the composite H. sapiens network

We unified five different types of interactions from different sources into one composite 
network representation (Table 1). From OmniPath, we included 53,232 TF-target gene 
interactions formed by 526 regulators and 14,488 target genes (access 17.01.2022) [19, 
20]. We included all interactions in the evidence classes A, B and C from DoRothEA 
as well as the TF-target gene and TF-miRNA interactions. From the same database, we 
included 11,085 miRNA-target interactions between 850 miRNAs and 3210 target genes 
(access 17.01.2022). The homology between the genes was retrieved from Ensembl based 
on the GeneTree pipeline [49]. This pipeline takes a reciprocal best BLAST approach in 
a simple case, but also considers more complex ontologies by resolving one-to-many and 
many-to-many relations. We applied a minimum reciprocal sequence identity of 50% as 
a threshold to include homologous interactions between a pair of genes. We only consid-
ered genes involved in at least one of the other data sets included in this analysis. More-
over, we added homologous miRNAs with identical seed sequences. This summed up 
to a total of 10,847 interactions for 4862 genes or miRNAs. We obtained protein–pro-
tein interactions and co-functional interactions from HumanNet v2 [21, 50]. We used 
the log-likely-hood score (LLS) provided by HumanNet to filter for interactions with 
LLS ≤ 3.0. Since the number of interactions in HumanNet was magnitudes bigger than 
the number of regulatory interactions, these filtering steps tried to balance the number 
of interactions without losing to many included genes. We selected 24,773 protein–pro-
tein interactions formed by 10,950 genes and 66,373 co-functional interactions formed 
by 10,683 genes. For the undirected interaction sets, duplicates were merged (e.g., A–B 
and B–A is equivalent for undirected interactions). This removed a total of 6 protein–
protein interactions, 28 co-functional interactions and 39 homologous interactions. 
We mapped all genes to Ensembl identifiers to make them comparable between the 
networks. For miRNAs, we kept the standard naming convention (e.g. hsa-miR-600e), 
which avoided potential overlaps with Ensembl gene identifiers. We omitted genes that 
could not be mapped to an Ensembl ID. The genes included in the analysis were based 
on the human genome version 38. We included annotated genes on chromosomes 1–22 
as well as X and Y. All interactions were merged into one file to create the composite net-
work. In this file, each interaction was represented by the two interacting nodes as well 
as their edge color. The edge color was represented by a network specific letter (TF-tar-
get gene interactions: R, miRNA-target gene interactions: M, homologous interactions: 
H, protein–protein interactions: P, Co-functional interactions: C, Additional file 1).

The hypoxia expression data set

We used expression data from three different cell lines under cyclic and chronic hypoxia 
conditions to contextualize the modules (GEO: GSE53012) [58]. The Affymetrix micro-
array data were processed and normalized using the Single Channel Array Normali-
zation (SCAN) [108]. It corrected the effect of technical bias, such as GC content by 
applying a mixture-modeling approach [108]. To calculate biological activity, we used 
the p-values from the differential expression analysis from the original publication.
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Contextualization

We implemented several methods to contextualize modules with expression data from 
perturbation experiments or experiments with case and control samples. We calcu-
lated the average Pearson correlation coefficient nPCC between each pair of genes in 
a module and compared it against the nPCC of a sampling of 1000 modules to measure 
co-expression within a module. Next, we derived a z-score for each module nPCC and 
transformed it into a p-value via the CDF of the standard normal distribution. We also 
added an implementation of the Expression Correlation Differential Score (ECD score), 
which highlights modules specific for an experimental condition as compared to the 
control condition [28]. There we subtracted for each edge in a module the Pearson cor-
relation of case samples from the Pearson correlation of condition samples and averaged 
this over all edges per module. We repeated this for 1000 randomly generated modules 
to obtain a background distribution, which is then used to calculate a z-score that was 
consequently transformed into p-values using the standard normal CDS. Given enough 
expression values and conditions, this allowed us to address the dynamicity of edges 
using the guilt by association and guilt by rewiring principles.

We implemented one additional metric compared to the previous framework to 
capture modules responding to a change in condition. This module activity score ( sa ) 
used p-values of a comparison between different conditions (e.g., from differential 
expression between case and control samples) and transformed them into a z-score 
zi = θ−1(1− pi) with θ−1 being the inverse normal CDF [79]. For each module, we 
calculated the aggregate z-score za = 1√

k

∑

allmodulegenes

zi for each module with size k. 

For each module size, we drew 1000 random modules of the same size and used this 
as a background distribution to calculate the normalized activity score sa = (za−µk )

σk
 . 

High values of sa indicated that the module could be interpreted as an active subnet-
work in the specific experimental condition.
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