
A fast and efficient path elimination
algorithm for large‑scale multiple common
longest sequence problems
Changyong Yu1, Pengxi Lin1, Yuhai Zhao1*, Tianmei Ren1 and Guoren Wang2 

Introduction
In various fields such as cancer treatment [1], cancer detection [2], protein sequence
classifying [3], gene data searching [4], and gene data analyzing [5], searching for the
Longest Common Subsequences (LCS) of Multiple (i.e., three or more) sequences
(MLCS) is a classic but difficult problem to solve. With the increase in the number of
sequences and the advancement of biotechnology, this problem is usually divided
into two categories. The first is to find the longest common subsequence between two
sequences, called the LCS problem; the second is to find the longest common subse-
quence among three or more sequences, called the MLCS problem.

In the past few decades, many algorithms dedicated to solving LCS problems have
been proposed; for example, Sankoff [6] published a paper in which he described how to
use the dynamic programming (DP) algorithm to determine the LCS of two sequences.

Abstract 

Background:  In various fields, searching for the Longest Common Subsequences
(LCS) of Multiple (i.e., three or more) sequences (MLCS) is a classic but difficult problem
to solve. The primary bottleneck in this problem is that present state-of-the-art algo-
rithms require the construction of a huge graph (called a direct acyclic graph, or DAG),
which the computer usually has not enough space to handle. Because of their mas-
sive time and space consumption, present algorithms are inapplicable to issues with
lengthy and large-scale sequences.

Results:  A mini Directed Acyclic Graph (mini-DAG) model and a novel Path Elimina-
tion Algorithm are proposed to address large-scale MLCS issues efficiently. In mini-DAG,
we employ the branch and bound approach to reduce paths during DAG construction,
resulting in a very mini DAG (mini-DAG), which saves memory space and search time.

Conclusion:  Empirical experiments have been performed on a standard benchmark
set of DNA sequences. The experimental results show that our model outperforms the
leading algorithms, especially for large-scale MLCS problems.

Keywords:  Multiple longest common subsequences (MLCS), The branch and bound,
Mini-MLCS

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Yu et al. BMC Bioinformatics (2022) 23:366
https://doi.org/10.1186/s12859-022-04906-5

BMC Bioinformatics

*Correspondence:
zhaoyuhai@mail.neu.edu.cn

1 College of Computer Science
and Engineering, Northeastern
University, Shenyang, China
2 School of Computer Science
and Technology, Beijing Institute
of Technology, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04906-5&domain=pdf

Page 2 of 19Yu et al. BMC Bioinformatics (2022) 23:366

LCS problems can be solved in O(n2) running time and memory space, where n is the
length of the sequences to be dealt with in each case. Generally, MLCS problems are
more difficult to solve than LCS ones. Numerous algorithms developed for LCS con-
cerns are inapplicable to MLCS challenges. [7–12], especially large-scale MLCS prob-
lems (i.e., problems with numerous and long sequences). As the number and length of
sequences rise, the amount of run-time and memory space used exponentially increases
owing to the high time and space complexity of O(nd) [13], where d (d ≥ 2) denotes the
number of sequences and n denotes the length of sequences.

Similarly, the dominant point-based approach, whose central concept was first intro-
duced by Hakata and Imai [14, 15], is a category of the algorithm for the MLCS problem
that is more effective and efficient than its predecessors, which constructs a Directed
Acyclic Graph and transforms the problem of finding MLCS into finding the longest
path from the source node to the ending node on the DAG graph. It is based on the
fact that the vast majority of points in DP-type algorithms’ dynamic tables are irrelevant
and that only the critical points, i.e., the so-called dominant points, are required to be
calculated and saved [13]. Unquestionably, the dominant point-based approach resulted
in a significantly narrower search field than DP-type approaches. It also turns out that
considerable performance and memory space reductions are feasible as a consequence
of this approach. Subsequently, several versions of the dominant point-based approach
have been presented in an effort to further enhance its performance [16–19]. In order to
accelerate up a search for the match point’s successors, a special data structure called the
successor table was designed by Chen et al. [17] referred to as Fast-LCS. Additionally,
Wang et al. [19] described a new method dubbed Quick-DP that employs a divide-and-
conquer strategy to accelerate the generation of DAG. In terms of temporal complex-
ity, Quick-DP outperforms Fast-LCS. However, as the number and length of sequences
grow, the DAG generated by Fast-LCS and Quick-DP will grow in size. As it turns
out, Fast-LCS and Quick-DP often get stuck during the DAG building process. This is
because the temporal complexity of both algorithms’ non-dominated sorting approach is
O(N 2) , where N is the number of match points in the DAG, which is substantially more
than n and d.

Recently wang et al. [20] introduced a unique algorithm dubbed Top-MLCS that
employs a novel approach for DAG construction and a forward-and-backward topologi-
cal sorting technique to determine the longest paths in the DAG. Due to the topologi-
cal sorting technology, this approach has a lower time consumption. Nonetheless, as the
size of the DAG grows, topological sorting algorithms consume a significant amount of
memory space because they must store the entire DAG, including all match points and
paths (i.e., unnecessary match points and non-optimal paths cannot be identified and
removed in time). As a result of the memory overflow, they cannot properly tackle the
large-scale MLCS problem. Liu et al. [21] offered a character merging algorithm (CMA)
that merges consecutively repeated characters, shortens sequences, minimizes the com-
plexity of problems to be handled, and therefore efficiently solves the large-scale MLCS
problem. This CMA method is very effective in resolving MLCS with a greater number
of repeated characters. In 2020 [22], a new PRDAG model for large-scale MLCS chal-
lenges was developed. There are no repeated match points in the PRDAG model, and
each match point is allocated a unique path recorder (a key precursor pointer) to keep

Page 3 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

track of the longest paths connecting the source point to itself. In addition to the opti-
mal algorithm, some excellent heuristic algorithms have been proposed. An algorithm,
MLCS-A*, [27] is presented to find an LCS for any given number of sequences. MLCS-
A* is a variant of the A* algorithm, a provably optimal best-first search algorithm [28].
But unlike A*, which finds the least-cost path in a graph, MLCS-A* searches in a multi-
dimensional matrix for the longest path corresponding to an LCS. In 2020, a new any-
time A* search [26] was proposed to solve the instance problem of various scenarios;
apart from providing excellent solutions, the anytime A* search can return proven gaps
at almost any time when terminated prematurely. However, with the increase in the
number and length of sequences, these strategies still can not cope with the challenges
of large-scale MLCS problems.

In this paper, mini-MLCS will be created to assure robust performance while search-
ing for MLCS problems. The primary difference between the proposed algorithm and
state-of-the-art algorithms is that mini-MLCS employs a novel path elimination strategy
based on lower bound and upper bound estimation to efficiently remove a large number
of unnecessary match points and non-optimal paths from a DAG, avoiding the use of
non-dominated sorting and topological sorting, which are both extremely time-consum-
ing and require a large amount of memory space. As a result, the size of the created DAG
is modest, and mini-MLCS can efficiently identify the longest paths from the DAG to
the MLCSs with minimal run-time and memory usage. Our main contributions are as
follows:

1	 Design a novel branch and bound strategy to eliminate unnecessary paths when con-
structing DAG graphs. Before obtaining the final MLCS, if we can judge that the cur-
rently calculated match point is not the point that constitutes the MLCS, then the
path through this point will not be the longest; these are called the non-point and
non-optimal paths. Therefore, we do not need to include them in the DAG.

2	 Design a smaller DAG (mini-DAG) to prevent the non-dominated and topologi-
cal sorting during the typical DAG construction process. The proposed branch and
bound strategy can eliminate the match points without comparing the match points.
It greatly saves time for non-dominated sorting and topological sorting.

3	 Propose a fast and efficient algorithm (mini-MLCS) to deal with large-scale sequence
problems with lower time and space costs. We design a novel branch and bound
graph strategy MLCS algorithm called mini-MLCS and compare it with the state-
of-the-art algorithms. The results show that our algorithm is better than these algo-
rithms and is suitable for large-scale MLCS problems.

Related work
Definitions of LCS/MLCS problems

Definition 1  Let s = 〈 c1,c2,...,cn 〉 represent a sequence on a character set � , where ci ∈
� , 1 ≤ i ≤ n, |�| represents the cardinality of � , and |s| represents the length of s, i.e.,|s| =
n. If the sequence s∗ = 〈 ci1,ci2,...,cim 〉 fufils 1 ≤ i1 < i2 < ...< im ≤ n, s∗ is refered to as a sub-
sequence of s, represented by s∗ ∈ sub(s), where sub(s) is the set of all subsequences of s.

Page 4 of 19Yu et al. BMC Bioinformatics (2022) 23:366

Actually, if you eliminate zero or more ordered or unordered characters from a given
sequence s, the resulting sequence will be shorter than the original sequence s. This is
referred to as a subsequence of the original sequence s.

For example, if s = ACGTA deletes the characters G and T from the sequence s, the
resulting sequence s∗ = ACA is a subsequence of the sequence s.

Definition 2  Given a sequence set Y = {s1, s2, ..., sd} , where d is the number of
sequences contained in Y and d ≥ 2, s1 , s2,..., sd on character set � , if there is a sequence
s∗ , which is a subsequence of any sequence in the sequence set Y, then the sequence s∗
is called the common subsequence of all sequences in the sequence Y. and if the length
of the sequence s∗ is the longest of all common subsequences in the set Y, then the
sequence s∗ is the longest common subsequence of all sequences in the set Y.

For example, Y = {s1 = AACGTCGT, s2 = CGACGTCC, s3 = GACCGTCT} , the existence
sequences s∗1 = ACGTC , s∗2 = AGC , ..., s∗m = C all belong to the common subsequence of
s1 , s2 , s3 in the set Y, and s∗1 is the longest among all common subsequences, then the
sequence s∗1 is the longest common subsequence of all sequences in the set Y.

Usually, there are more than one LCS for given d sequences. If d = 2 , the problem
of finding LCS is usually called LCS problem; otherwise, if d ≥ 3 , the problem is called
MLCS problem.

Definition 3  Give a sequence s = 〈 c1,c2,...,cn 〉 , for i = 0,1,...,n, define pre(s[i]) = 〈 c1
,c2,...,ci 〉 as the i-th prefix of s and suf(s[i]) = 〈 ci+1 , ci+2 , ..., cn 〉 as the (i+1)-th suffix of
s(exclude i-th character).

For example, if s = AACGTCGT , then pre(s[5]) = AACGT is the 5-th prefix of s and
suf (s[5]) = CGT is the 6-th suffix of s, and pre(s[0]) is an empty sequence, suf(s[0]) is an
entire sequence.

Dynamic programming approaches

The DP approach is a time-honored method for solving LCS and MLCS problems [23].
Given d sequences of length n, s1,s2,...,sd , it will iteratively construct a d-dimension score
table L which have nd elements, where the element L[i1, i2, ..., id] represents the length
of the MLCS of the prefix sequences pre(s1[i1]) , pre(s2[i2]),..., pre(sd[id]) , which can be
calculated by the following formula [24]:

where L̄ = L[i1, i2, · · · , (ik − 1), · · · , id] | k = 1, 2, · · · , d .
After constructing the score table L, the MLCS may be calculated by traversing from

the bottom-right element L[n, n, ..., n] to the top-left element L[0, 0, ..., 0]. For example,
Fig. 1 illustrates the score table L constructed for the sequences s1 = AACGTCGT and
s2 = CGACGTCC , and the LCS for these two sequences is determined by traversing from
L[8, 8] to L[0, 0].

(1)L[i1, · · · , id] =







0 if ∃ij = 0, (1 ≤ j ≤ d)
L[i1 − 1, · · · , id − 1]+ 1 if s1[i1] = · · · = sd[id]
max(L̄) otherwise

Page 5 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

It can be observed from Fig. 1 that for given d sequences, and their length is n, the
DP approach has a time and space complexity of up to O(nd) [9]. As d and n expand,
these approaches use exponentially more space and time. That is, the scalability of a DP
approach is restricted, making it unsuitable for large-scale MLCS problems.

Dominant point‑based approaches

Before delving into the details of the dominant point-based method, we’ll define a few
terms.

Definition 4  Given a sequence set Y = {s1, s2, ..., sd} , where d is the number of
sequences contained in Y and d ≥ 2, s1 , s2,..., sd on character set � , let si[pi] represent the
pi-th character in the left-most sequence si . If s1[p1] = s2[p2] = ... = sd[pd] = σ , the vec-
tor p = ( p1 , p2,..., pd ) is referred to as a match point for these d sequences. Each match
point p = ( p1 , p2,..., pd ) is associated with a distinct symbol σ . As a result, we often use
p = σ(p1 , p2,..., pd ) to express the match point, where σ is the symbol for p, and is repre-
sented by Ch(p) = σ.

For example, if two sequences s1 = AACGTCGT and s2 = CGACGTCC are supplied,
there are several match points of the form σ(i, j) . The common character σ ∈ � , con-
nected by a dotted line, corresponds to its indices i and j in two sequences, i.e.,s1[i] =
s2[j] = σ , such as A(1, 3), G(4, 2). Because Ch(1, 3) = A , the match point A(1, 3) is some-
times abbreviated as (1, 3). Similarly, G(4, 2) might be denoted as (4, 2).

1 2 3 4 5 6 7 8

A A C G T C G T

0 0 0 0 0 0 0 0 0

1 C 0 0 0 1 1 1 1 1 1

2 G 0 0 0 1 2 2 2 2 2

3 A 0 1 1 1 2 2 2 2 2

4 C 0 1 1 2 2 2 3 3 3

5 G 0 1 1 2 3 3 4

6 T 0 1 1 2 3 4 4

7 C 0 1 1 2 3 4 5 5

8 C 0 1 1 2 3 4 5 5 5

4

5

3

4

5

Fig. 1  shows the L score table for two sequences, s1 = AACGTCGT and s2 = CGACGTCC . The LCS can be
determined by traveling from number 5 to number 1 in the scoring table L. And the dominates region may
be represented by a shaded portion

Page 6 of 19Yu et al. BMC Bioinformatics (2022) 23:366

Definition 5  Given two match points p and q of d sequences on a symbol set T, we say:

1	 p = q if ∀ i (1 ≤ i ≤ d), pi = qi.
2	 p weakly dominates q, if ∀ i (1 ≤ i ≤ d), pi ≤ qi and ∃ i, pi < qi (denoted by p � q).
3	 p dominates q or q is dominated by p, if ∀ i (1 ≤ i ≤ d), pi < qi (denoted by p ≺ q).
4	 q is called a successor of p if p ≺ q. Further, if there is no match point r to satisfy p ≺ r

≺ q, then q is called an immediate successor of p.
5	 If q is a successor of p, we call p a predecessor of q.

Generally, a match point p has no more than |�| successors.

Definition 6  Given a collection of matches P = {P1,P2, ...,Pm} , for a match point Pj ∈
P , If ¬ ∃ Pi � Pj , 1 ≤ i, j ≤ m, i = j, Pj is called a non-dominated point (dominant point for
short) on P. All of dominant points on P form the dominant set of P .

The dominant point-based approaches are based on constructing a direct acyclic
graph (DAG). Their organizational structure is as follows. To begin, given d sequences,
the graph’s source point is defined as a d-dimensional point O(0, 0...0). This point has no
input edge, so its in-degree is 0. The source point’s level is defined as level 0. Following
that, we identify all successor points of the present point O and create a directed edge
connecting it to every one of its successors. The successor points’ level is defined as level
1. Non-dominated sorting is used to compute the set of all dominated points on level-1.
Then, for each non-dominated point on level-1, we identify all successor points, create
an edge connecting each non-dominated point on level-1 to every successor, and desig-
nate the level of all these successors as level 2. We use non-dominated sorting to identify
all dominated points on level-2. This procedure is continued until no additional succes-
sor points are formed, at which time the DAG building is complete. If a point without a
successor, it is defined as the ending point ( ∞,∞,...,∞ ). When the DAG is established,
the LCS/MLCS is formed by the character sequence represented by the points along the
longest path from the source point to the ending point. Thus, the LCS/MLCS problem’s
primary problem is how to create the DAG.

For example, as shown in Fig. 2, the sequences s1 = AACGTCGT , s2 = CGACGTCC and
s3 = GACCGTCT , the MLCS is generated using the dominant points-based approach.

1	 Initialization.

	 Set the source node O(0, 0, 0) and the ending node ( ∞,∞,∞).
2	 DAG construction on level 1.
	 For point O(0, 0, 0) on D0 , find all of its successors: A(1, 3, 2), C(3, 1, 3), G(4, 2, 1)

and T(5, 6, 6), and add a direct edge from point O(0, 0, 0) to each one of them.
These successors are all level-0 successors and all level-1 points. Put them in L1 ’s
set. The dominated point T(5, 6, 6) in set L1 is removed using non-dominated sort-
ing (notice that A(1, 3, 2) ≺ T(5, 6, 6), T(5, 6, 6) is a dominated point). Set D1 =
{A(1, 3, 2),C(3, 1, 3),G(4, 2, 1)} , and k to k + 1.

3	 DAG construction on level 2.

Page 7 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

	 For each point in D1 = {A(1, 3, 2),C(3, 1, 3),G(4, 2, 1)} , find all of its successors.
C(3, 4, 3), G(4, 5, 5), and T(5, 6, 6) are all successors to point A(1, 3, 2) ∈ D1 and are
included in L2 . Create a direct edge connecting point A(1, 3, 2) to each one of its
successors. For point C(3, 1, 3), C(6, 4, 4), G(4, 2, 5), and T(5, 6, 6) are all its suc-
cessors and are included in L2 . Add a direct edge from C(3, 1, 3) to each of its suc-
cessors. For point G(4, 2, 1), C(6, 4, 3), G(7, 5, 5), and T(5, 6, 6) are all its successors
and add a direct edge from G(4, 3, 2) to each of its successors, put these successors
into L2 . Eliminate the redundant successors in L2 . The dominated points G(4, 5, 5),
T(5, 6, 6) and G(7, 5, 5) are deleted using the non-dominated sorting on L2 . Allow D2
= {C(3, 4, 3),C(6, 4, 4),G(4, 2, 5),C(6, 4, 3)} , and k to k + 1.

4	 Repeat step 3 until no successor exists for all points in the set Dk . Then substitute
(∞,∞,∞) for the points in Dk , and the DAG construction is complete.

As seen above, the dominant point-based techniques have the following significant
disadvantages:

1	 Each level may contain numerous repeated match points and dominated points. (e.g.,
T(5, 6, 6) appears three times in L2 and three points G(4, 5, 5), T(5, 6, 6), G(7, 5, 5) are
dominated points), and a match point appearing in one level may appear numerous
times in subsequent levels (e.g., T(5, 6, 6) appears in L1-L4 ) and is only useful in the

Fig. 2  The DAG is constructed for three sequences, s1 = AACGTCGT , s2 = CGACGTCC and
s3 = GACCGTCT , with black and gray nodes representing repeated and dominated nodes, respectively

Page 8 of 19Yu et al. BMC Bioinformatics (2022) 23:366

final level. Thus, the created DAG will be very large, to the point that the computer
will run out of memory to hold it.

2	 The non-dominated sorting approach will need a significant amount of work to
obtain Dk . It has an O(dNk

2) time complexity at level k, where Nk is the number
of match points in Lk and d represents the number of sequences. Note that Nk
will be really huge (in the worst-case case, Nk = |�|k rises exponentially as level k
increases). Thus, when n, d, and |�| are big, i.e., when the MLCS issue becomes a
large-scale problem, the non-dominated sorting approach becomes very time-con-
suming.

Fast-LCS [17] and Quick-DP [19] are two representative algorithms of this kind.

The proposed mini‑MLCS
The main framework of mini‑MLCS

As previously stated, existing approaches cannot address large-scale MLCS problems
owing to their enormous time and space requirements [22]. The underlying reason
behind this is that as the number d and length n of sequences grow, non-dominant sort-
ing and topological sorting will spend a lot of time on the comparison between match
points. As it turns out, the computing time and storage space requirements surpass the
maximum limits. To address these problems, the proposed mini-MLCS rapidly finds
unnecessary match points and non-optimal paths during DAG building and then elimi-
nates them in time to limit the DAG’s size.

To be precise, in order to get the final MLCS of sequences, mini-MLCS first designed
a strategy to quickly predict the genuine MLCS R’s lower bound Lower(R). Then, before
deciding whether or not to include match point p in the DAG, mini-MLCS calculates an
upper bound Upper(p,∞) on the length of any path from the match point p to the end-
ing match point. Assuming that the true distance between p and the ending point is the
distance(p), the obtained upper bound Upper(p,∞) should be greater than or equal to
distance(p). Finally, determine whether the estimated distance from the starting point to
the ending point is less than Lower(R) (Note that the distance from the starting point O
to p is the current level value level(p) when the DAG calculates to p). If Upper(O, p,∞)
= level(p) + Upper(p,∞) < Lower(R), then no path via p is the longest path. As a result,
p is an unnecessary match point, and all paths going through it are not the longest in the
DAG. Based on this discovery, all unnecessary match points and non-optimal paths may
be deleted immediately.

Estimation of the lower bound Lower(R) in a short time

We do not really know the genuine length of MLCS R until we receive it, but we can
gain a lowest bound Lower(R) by generating an estimated MLCS. Then the length of this
estimated MLCS is a lower bound on R, The longer the length of the estimated MLCS,
the more closely it resembles R. Our objective is to find an estimated MLCS as rapidly as
feasible. A rapid heuristic strategy for calculating the lower bound Lower(R) is designed
based on these concepts. The critical stages are listed below.

For a d-dimensional match point p = ( p1 , p2,... , pd ), max(p) represents the largest
number in the match point p, min(p) represents the smallest number in the match point

Page 9 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

p, and ϕ(p) = max(p)−min(p) represents the largest position offset of d sequences in
the match point p. Among all match points at each level, we pick up the first t smallest
ϕ() . Because it can be observed from Fig. 1, the match point with the smaller ϕ() tends
to contain a larger dominates regions than points of larger ϕ() , and larger dominates
regions may contain more match points, so the smaller ϕ() is more likely to be the match
point that constitutes the longest common subsequence than the match point with the
larger ϕ() . For example, in Fig. 1, C(3, 4) contains more dominates regions than C(3, 7),
so C(3, 4) is more likely to form the longest common subsequence. Based on this idea,
two strategies are proposed to get an accurate lower bound.

Strategy 1: Assigning a small initial value to t in the DAG construction process means
that t match points with the smallest ϕ() value are selected in each level of the DAG. The
role of t is to reduce the search space and get a suitable Lower(R) at a faster speed. In
this way we will get an initial Lower(R). Next, add a certain step length µ to t each time,
so that t = t + µ , and continue to construct the DAG to calculate the Lower(R). Update
Lower(R) if it changes, if there is no change in the Lower(R) for more than τ (we define
it by ourselves) times, then it can be considered that a more accurate Lower(R) has been
obtained.

The following is an example of calculating the lower bound.
Assume t is a small positive integer (for example, t = 4 ) and D is a collection of t ran-

domly chosen match points with the first t lowest values of ϕ()

1	 Initialization: Set O = (0, 0, ..., 0) as the first chosen match point, i.e., D = {O} , and
set Lower(R) = 0.

2	 Update Lower(R): Pick up t successors with the first t lowest values of ϕ() from all
successors in D (if there are only β successors with β ≤ t, then let t = β ). Update D by
deleting all of its existing elements and inserting the chosen match points, and letting
Lower(R) = Lower(R)+ 1.

3	 Return Lower(R) if D is empty; otherwise, proceed to step 2.

In Fig. 3, we utilize the previous example to demonstrate the method.
Lower(R) = 0 at first, and D = O . O has four successors (1, 3, 2), (3, 1, 3), (4, 2, 1),
(5, 6, 6). because t = 4, all these successors are selected. Thus, we update D by

Fig. 3  The process of estimating a lower bound Lower(R) of the length of the longest paths in DAG

Page 10 of 19Yu et al. BMC Bioinformatics (2022) 23:366

D = {(1, 3, 2), (3, 1, 3), (4, 2, 1), (5, 6, 6)} and set Lower(R) = Lower(R)+ 1 . Calculate
the successors for each match point in D, and there are 10 successors in total (in Fig. 2,
in order to find the lower bound as soon as possible, point filtering is not carried out,
that is, all filtered points will be included, including the successor point C(6, 7, 7) of
T(5, 6, 6)), with four successors (3, 4, 3),(4, 5, 5), (5, 6, 6), (6, 4, 4) with the first four
smallest ϕ() values selected (note that the smallest ϕ() value match point is (3, 4, 3),
(4, 5, 5), (5, 6, 6) and the second smallest ϕ() value match point has two: (6, 4, 4) and
(7, 5, 5) with the same ϕ() value. In this scenario, we merely need to choose one at
random from (6, 4, 4) and (7, 5, 5) (assuming (6, 4, 4) is chosen) and update D by D =
{(3, 4, 3), (4, 5, 5,), (5, 6, 6), (6, 4, 4)} and update Lower(R) by Lower(R) = 2 . Similarly,
with Lower(R) = 3 , D = {(4, 5, 5), (5, 6, 6), (6, 7, 7), (6, 7, 4)} . When Lower(R) = 4 , the
appropriate D = {(6, 7, 7), (5, 6, 6)} . Finally, we obtain Lower(R) = 5 and the appropriate
D = {(6, 7, 7)}.

Estimation of the upper bound Upper(O, p,∞) with efficiency

Assuming that p is a current point on the DAG and that we want to know the lengths of
all paths from O to the ending match point that passes through p. However, the lengths
of these paths are unknown until they are constructed. But if we can estimate an upper
bound Upper(O, p,∞) on the lengths of these paths and know that it is less than the
lower bound Lower(R) (i.e., Upper(O, p,∞) < Lower(R)), then we can conclude that these
paths via p are not the longest paths and can be removed from the DAG. In this manner,
the new DAG will be far smaller than the previous ones.

Notably, the DAG’s current match point p has been established, and the length of the
longest path from O to p may be determined. Indeed, it is the DAG level of p (denoted by
level(p)).

Additionally, the genuine length of the longest path distance(p) between
the current match point p and the ending match point is generally unknown.
A possible method is to estimate the upper bound Upper(O, p,∞) . Then
Upper(O, p,∞) = level(p)+Upper(p,∞) is the upper bound on the length of any path
via p. In the following, we will design some strategies for rapidly estimating Upper(p,∞)
and bringing it as near to the real value distance(p,∞) as feasible (i.e., make it as small as
possible).

Given d sequences s1 , s2,...,sd on a character set and a match point p = ( p1 , p2,..., pd ),
the following conclusion is obtained:

Theorem 1  For each longest path between match point p = ( p1 , p2,..., pd ) and the
ending match point, and n is the length of the sequence corresponding to max(p). Hence
Upper(p,∞ ) = n - max(p) is an upper bound on the length of any longest path between
match points p = ( p1 , p2,..., pd ) and the ending match point ∞ , and Upper(O,p,∞ ) =
level(p) + n - max(p) is an upper bound of the length of the longest path from O to ∞
through p.

Page 11 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

Proof  Denote ξ = n−max(p) . Obviously, distance(p) is equal to the longest com-
mon subsequence of sequence suf (si[pi])(1 ≤ i ≤ d) , distance(p) ≤ ξ because for the
sequence corresponding to max(p) there are at most ξ character after it. Therefore
Upper(p,∞) = n−max(p) , namely Upper(O, p,∞) = level(p)+ n−max(p).

Some extensions can be developed on the basis of Theorem 1. Select the first δ max(p)
of match point p, then compute the LCS of sequences suf (si[maxi(p)]) (1 ≤ i ≤ δ) .
and use it as the upper bound of p. The upper bound obtained will undoubtedly be
closer to distance(p) than the upper bound obtained by Theorem 1, but it will take
longer to calculate each match point.

Let us analyze the aforementioned example in Fig. 2 in further depth to demon-
strate the strategy for identifying unnecessary match points. The MLCS’s estimated
lower bound is known, i.e., Lower(R) = 5 , shown in Fig. 3. According to Theorem 1,
upper(p,∞) can be estimated, and level(p) can be achieved during the DAG construc-
tion process, shown in Fig. 4a.

The match point C(3, 1, 3)’s level(C) is defined as 1. C(3, 1, 3) is followed by
three successors: C(6, 4, 4), G(4, 2, 5) and T(5, 6, 6). Set level(p) equal to 2 for each
of its successors, i.e., level(C(6, 4, 4)) = level(G(4, 2, 5)) = level(T (5, 6, 6)) = 2 ,
because the length of the longest paths from the starting match point to
each of the successors is 1, and Lower(R) = 5 , shown in Fig. 3. Accord-
ing to Theorem 1, Upper(C(6, 4, 4),∞) = 8−max(C(6, 4, 4)) = 2 ,
Upper(C(4, 2, 5),∞) = 8−max(C(4, 2, 5)) = 3 and
Upper(C(5, 6, 6),∞) = 8−max(C(5, 6, 6)) = 2 . So as seen in Fig. 4a, match point
C(6, 4, 4) and T(5, 6, 6) are clearly identified as unnecessary match points since they
meet
Upper(O, p,∞) = level(p)+Upper(p,∞) < Lower(R)
and none of the paths (branches) linking O and them will be included in the DAG.
In addition to the methods for finding the upper bound introduced above, the lit-

eratures [26] and [27] mentioned two more compact strategies for finding the upper
bound. They build vectors in the preprocessing stage and then use them to find the

Fig. 4  a, b and c show the processes of using Theorem 1, Strategy 2, and Strategy 3 to removing
unnecessary points, respectively. And grey point, dark grey point and light grey point represent unnecessary
points in a, b and c, respectively

Page 12 of 19Yu et al. BMC Bioinformatics (2022) 23:366

upper bound for each match point in the DAG construction stage. The specific details
are expanded in strategy 2 and strategy 3.

Strategy 2: Let numc
si
 represent the number of the character c in sequence

si (1 ≤ i ≤ d) . For each longest path between match point p = ( p1 , p2,..., pd ) and the
ending match point. The following conclusions can be drawn, for any c in � , number
of c in the sequence on the path from p to the end node will not exceed
min

{

numc
suf (s1[p1])

, numc
suf (s2[p2])

, ..., numc
suf (sd [pd])

}

.

Hence,

Figure 4b shows an application of strategy 2. The match point A(1, 3, 2) has three succes-
sors in level-2, namely C(3, 4, 3), G(4, 5, 5) and T(5, 6, 6). For G(4, 5, 5),
suf (s1[4]) = TCGT , suf (s2[5]) = TCC and suf (s3[5]) = TCT .

Upper(G(4, 5, 5),∞) =
∑

c∈�

min

{

numc
suf (s1[p1])

,

numc
suf (s2[p2])

, numc
suf (s3[p3])

}

= 1+ 1+ 0+ 0 = 2

 , because for C and T , their minimum

number of occurrences in suf (s1[4]) , suf (s2[5]) and suf (s3[5]) is once, A and G appears at
least 0 times in suf (s1[4]) , suf (s2[5]) and suf (s3[5]) . Upper(O,G(4, 5, 5),∞) = level

(G(4, 5, 5))+Upper(G(4, 5, 5),∞) = 2+ 2 < Lower(R), match point G(4, 5, 5) is identi-
fied as unnecessary point and none of the paths (branches) linking O and G(4, 5, 5) will
be included in the DAG.

Strategy 3: For each longest path between match point p = ( p1 , p2,..., pd ) and
the ending match point and a vector mi , where mi[pi, pi+1] with pi = 1, ..., |si| and
pi+1 = 1, ..., |si+1| , stores the length of the LCS of strings suf (si[pi]) and suf (si+1[pi+1]).

Hence,

Figure 4c shows an application of strategy 3. For match point G(4, 2, 1) on
level-1, suf (s1[4]) = TCGT , suf (s2[2]) = ACGTCC and suf (s3[1]) = ACCGTCT .
The result is Upper(G(4, 2, 1),∞) = min(3, 5) = 3 , it is the minimum value of
LCS of suf (s1[4]) and suf (s2[2]) and LCS of suf (s2[2]) and suf (s3[1]) , namely
Upper(O,G(4, 2, 1),∞) = level(G(4, 2, 1))+Upper(G(4, 2, 1),∞) = 3+1 = 4 < Lower(R) , match
point G(4, 2, 1) is identified as unnecessary point and none of the paths (branches) link-
ing O and G(4, 2, 1) will be included in the DAG.

For strategies 2 and 3, when the scale of n and d is particularly large, it will take a long
time to preprocess. Therefore, in order to reduce the preprocessing time, we do not need
to apply all sequences to the preprocessing, but choose δ sequences as different as pos-
sible. In this way, we can get the pretreatment results in a shorter time.

Fortunately, Wang et al. [25] define a metric for comparing two sequences. This metric
is referred to as the diversity metric.

Let numc
si
 represent the number of the character c in sequence si . Note that the greater

the value of
∣

∣

∣
numc

si
− numc

sj

∣

∣

∣
 , the more diverse si and sj are, and the greater the difference

(2)Upper(p,∞) =
∑

c∈�

min
{

numc
suf (s1[p1])

, numc
suf (s2[p2])

, ..., numc
suf (sd [pd])

}

(3)Upper(p,∞) = min
i=1,...,d−1

mi[pi, pi+1]

Page 13 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

between these two sequences. By considering this factor, the diversity between si and sj is
defined as:

Here are a few instances that illustrate the above.
We can choose the second sequence with greater diversity using sequence s1 based on

the diversity measure.
s1 = AACGTCGT.
s2 = CGACGTCC.
s3 = GACCGTCT , we choose s1 = si , then we count how many times each character

appears in these sequences.
numA

s1
= 2 , numC

s1
= 2 , numG

s1
= 2 , numT

s1
= 2

numA
s2
= 1 , numC

s2
= 4 , numG

s2
= 2 , numT

s2
= 1

numA
s3
= 1 , numC

s3
= 3 , numG

s3
= 2 , numT

s3
= 2

diversity(s1, s2) =
2
8 |2− 1| + 2

8 |2− 4| + 2
8 |2− 2| + 2

8 |2− 1| = 3
4

diversity(s1, s2) =
2
8 |2− 1| + 2

8 |2− 3| + 2
8 |2− 2| + 2

8 |2− 2| = 1
2

As a result, we conclude that s1 and s2 are more dissimilar than s1 and s3.
Therefore, when the scale of the sequence is large, we choose s1 = si and pick up δ

(δ ≪ d) most different(contains s1 sequence) sequences from the given d sequences
using the formula (4). In this way, we greatly reduce the preprocessing time of strategies
2 and 3.

Construct mini‑DAG

Based on the above branch elimination approach, we construct the mini-DAG level
by level. First, level zero D0 consists of merely the beginning match point O, and then
level 1 through level R, represented by D1 , D2,..., DR , respectively, are consecutively cre-
ated, where R denotes the length of the final MLCS. To minimize the time and space, we
merely create and store one level each time.

After Dk is constructed (currently, D0 is constructed), the following procedures can be
taken to build Dk+1 :

1	 Select every match point p ∈ Dk , search its successorset succ(p).
2	 For each successor q ∈ succ(p) , set the level of q (i.e.,the length of the current longest

path from O to q) as level(q) = k + 1.
3	 Identify whether q is a useless match point according to Theorem 1, Strategy 2 and

Strategy 3. If yes, do not put q in DAG, go to step 5. Otherwise, put q into Dk+1.
4	 Add a directed edge from p to q in DAG.
5	 If successors of all match points in Dk have been checked, the construction of Dk+1 is

finished. Otherwise, go to step 1.

(4)diversity
(

si, sj
)

=
∑

c∈�

numc
si

|si|

∣

∣

∣
numc

si
− numc

sj

∣

∣

∣

Page 14 of 19Yu et al. BMC Bioinformatics (2022) 23:366

Mini‑MLCS algorithm

The pseudo-codes of algorithm mini-MLCS are presented in Algorithm 1 in order to
describe the new algorithm in detail.

At the beginning, the estimated lower bound Lower(R) is calculated. The proposed
algorithm’s key steps are lines 3 ∼ lines 21, which explain how a mini-DAG is built level
by level. Ch(q) in the lines 8 means the character represented by the match point q,
which is described in Definition 4, and q.precs represents the longest common subse-
quence from the beginning match point O to the current point q. Finally, from the mini-
DAG, the longest paths corresponding to MLCSs may be obtained, and all MLCSs will
be returned in lines 22 ∼ lines 23.

Time and space complexity
Mini‑MLCS time complexity

In order to show the efficiency of Algorithm 1 compared with other algorithms, the
time complexity of the proposed Algorithm 1 and the comparison algorithm are shown
here. First, the length of the sequences is denoted by n, and d represents the number of
sequences. In the initialization, we built the Successor Table that was proposed by Fast-
LCS so that we could rapidly discover the successor nodes of a point with O(d|�|n) [17].
Second, we estimate the time cost to find successor nodes and add them to the Vector
Hash Table. Use N to represent the whole collection of points in the mini-DAG and the
time complexity is O(|N|). Finally, in mini-DAG, we use E to represent the whole collec-
tion of edges, and the time complexity is O(|E|). For strategy 1, the time complexity of
building a DAG once and finding it’s lower bound is O(d|�||MLCS|t) . Then calculate the
time complexity of the upper bound. In Theorem 1, the time complexity of finding the
upper bound is O(d). In the pretreatment phase (before the mini-DAG construction),

Page 15 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

we choose the δ sequence from d sequence by formula (4) and apply it to strategies 2
and 3. The preprocessing results are stored by using appropriate data structures, we can
compute the Upper(p,∞) of strategy 2 at any match point quickly, the time complex-
ity is O(δ|�|) for each match point. And strategy 3 in the preprocessing phase, it takes
O(δn2) . Therefore, considering the worst case, the time complexity of mini-MLCS is
O(d|�|n) + O(d|�||MLCS|t) + O(δn2) + O(|E|) + O(|N|). Since O(d|�|n) ≪ O(δn2) ,
O(d|�||MLCS|t) ≪ O(δn2) , O(|N|) = O(|E|) and O(δn2) < O(|N|), the time complexity
of our proposed Algorithm 1 is O(|N|).

For the compared algorithms, Quick-DP takes O
(

d(log n)d−2
∣

∣NQ

∣

∣

)

 [19], where NQ
is the set of points in the DAG constructed by Quick-DP, and the time complexity of
Top-MLCS is O(|NT |) [20], where NT is the set of points in the ICSG constructed by
Top-MLCS. It should note that, due to the lack of a reasonable scheme to reduce the
search space, the DAG constructed by Top-MLCS is much larger than those constructed
by Quick-DP and mini-MLCS, and DAG constructed by Quick-DP is larger than that
constructed by mini-MLCS, i.e., |NT | ≫ |NQ| > |N|. But Quick-DP uses the time-consum-
ing non-dominated sorting method to reduce the search space, so O

(

d(log n)d−2
∣

∣NQ

∣

∣

)

 >
O(|NT |) . Thus, O

(

d(log n)d−2
∣

∣NQ

∣

∣

)

 > O(|NT |) ≫ O(|N|).

Mini‑MLCS space complexity

Next, we calculate the space complexity of Algorithm 1. The space consumed by the Suc-
cessor Table is O(d|�|n) ; for strategy 2, the space complexity is O(δ|�|n) , the space com-
plexity of strategy 3 is at most O(δn2) , but the space spent by storing points is O(d|N|).
And the storing edge takes up O(|E|) area. Since O(d|�|n) ≪ O(d|N |)+ O(|E|) ,
O(δ|�|n) ≪ O(d|N |)+ O(|E|) , O(d|N |) = O(|E|) and O(δn2) ≪ O(d|N |)+ O(|E|) , the
space complexity of Algorithm 1 is O(d|N|). The space complexity of Quick-DP and Top-
MLCS can be expressed as O(d|NQ|) [19] and O(d|NT |) [20], respectively. For |NT | > |NQ|
> |N|, we can deduce that our mini-MLCS algorithm has lower space complexity than
two compared algorithms due to the use of the branch and bound strategy.

Experiments and analysis
Experimental setups and compared algorithms

To illustrate mini-MLCS’s performance on large-scale MLCS problems, we conduct
experiments comparing it to four state-of-the-art algorithms Fast-LCS [17], Quick-
DP [19], Top-MLCS [20], and A* search [26]. All experiments are conducted on a
server equipped with four Intel(R) Xeon(R) E5-2640 2.40 GHz ten-core CPUs, 160
GB RAM, 4 NVidia Tesla K40 graphics cards, and 1.1TB of disc space. Ubuntu 16.04
is the operating system. All algorithms are written in Eclipse and compiled using C
and C++ code. Biological sequences from NCBI http://​www.​ncbi.​nlm.​nih.​gov/​nucco​
re/​11064​5304?​repor​t =​ fasta are selected as the test sets. This is the complete genome
sequence of Pseudomonas aeruginosa PAO1, and the experimental data will be ran-
domly selected from this genome. The related literature [26] on the LCS problem
offers a public benchmark sets for the LCS problem. The BL benchmark [26] consists
of 450 problem instances grouped by different values for the number of input strings
(d), the maximum length of the input strings (n), and the alphabet size ( |�| ). For each

http://www.ncbi.nlm.nih.gov/nuccore/110645304?report%20=%20fasta
http://www.ncbi.nlm.nih.gov/nuccore/110645304?report%20=%20fasta

Page 16 of 19Yu et al. BMC Bioinformatics (2022) 23:366

Table 1  The run time (s)/memory (GB) consumed by the compared algorithms on DNA sequences
with length fixed to 120

The bold values represent the minimum running time and minimum memory of all the algorithms in the table on the
dataset

Number of
sequences

R DNA(|�| = 4)

mini-MLCS Top-MLCS Quick-DP Fast-MLCS

10,000 15 777.1/8.1 1245.7/31.8 + +

15,000 14 966.3/14.7 1499.2/17.2 + +

20,000 13 1151.1/12.3 1362.8/17.6 + +

25,000 13 1162.7/11.1 1225.1/35.8 + +

30,000 11 173.9/1.8 226.1/2.9 515.5/5.1 +

35,000 11 146.3/1.9 403.0/3.9 590.6/5.1 +

40,000 11 234.4/1.8 256.1/3.1 432.6/5.5 +

45,000 11 174.9/2.1 393.7/3.4 480.2/5.4 +

50,000 11 195.9/2.1 298.8/3.6 448.1/6.6 +

Table 2  The run time (s)/memory (GB) consumed by the compared algorithms on DNA sequences
with number fixed to 20,000

Length of
sequences

R DNA(|�| = 4)

mini-MLCS Top-MLCS Quick-DP Fast-MLCS

90 8 3.7/0.2 4.8/0.1 2.8/0.1 38.84/0.8

95 9 14.1/0.3 25.6/0.4 11.4/0.9 466.5/0.9

100 10 29.4/0.7 39.5/1.1 76.9/2.6 4531.1/1.7

105 11 74.6/1.6 91.9/2.1 339.6/3.6 +

110 11 102.9/1.6 130.2/2.5 437.3/5.3 +

115 12 190.2/2.9 256.0/3.6 809.9/6.6 +

120 13 1151.1/12.3 1362.8/17.6 + +

Table 3  The average results for benchmark BL, length fixed to 100

The bold values represent the shortest average running time of all the algorithms in the table on the dataset

Number of
sequences

|�| A* Top-MLCS mini-MLCS

R t #opt R t #opt R t #opt

10 4 20.5 428.33 6 0.0 – 0 20.5 393.76 6

12 12.7 1.73 10 12.7 5.2 10 12.7 0.78 10

20 7.9 0.08 10 7.9 0.28 10 7.9 0.07 10

50 4 0.0 – 0 0.0 – 0 20.1 374.20 7

12 6.9 0.17 10 6.9 0.46 10 6.9 0.11 10

20 3.0 0.06 10 3.0 0.08 10 3.0 0.05 10

100 4 0.0 – 0 0.0 – 0 19.3 311.36 6

12 5.2 0.08 10 5.2 0.23 10 5.2 0.05 10

20 2.1 0.07 10 2.1 0.08 10 2.1 0.04 10

150 4 0.0 – 0 0.0 – 0 18.8 280.54 9

12 4.7 0.07 10 4.7 0.16 10 4.7 0.05 10

20 1.9 0.08 10 1.9 0.08 10 1.9 0.03 10

200 4 0.0 – 0 0.0 – 0 18.0 180.24 8

12 4.1 0.07 10 4.1 0.18 10 4.1 0.06 10

20 1.1 0.06 10 1.1 0.11 10 1.1 0.01 10

Page 17 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

combination of d, n, and |�| the set offers ten instances generated uniformly at ran-
dom. We conduct the following four types of experiments. And these results are sum-
marized in Tables 1, 2, 3 and 4.

For the first kind of experiment, we fixed the sequence length to 120 and performed
trials on 9 examples with a sequence count ranging from 10,000 to 50000. For the sec-
ond kind of experiment, we limit the number of sequences to 20,000 and run the experi-
ment on sixteen cases with sequence lengths ranging from 90 to 120. For the third kind
of experiments, we extract instances with sequence length of 100 from the BL set and
obtained the average results in Table 3. For the last kind of experiments, to show the
estimate method’s robustness, we evaluate the effects of t on Lower(R) by changing the
values of t through the experiments.

Column 1 in Tables 1 and 3 indicates the total number of DNA sequences; column 1
in Tables 2 and 4 indicates the total length of DNA sequences; column 2 in Tables 1, 2
and 4 indicates the total length R of MLCS in the test sequences. In Tables 1, 2 and 4,
columns 3 to 6 provide the mean running time(s)/memory(GB) for mini-MLCS, Top-
MLCS, Quick-DP and Fast-MLCS respectively. Bold face numbers denote the data set’s
lowest running time, and ’+’ indicates that results are not obtained when the running
time exceeds 5000 s. For Table 3, ’−’ indicates that the running memory exceeds 32GB
and the result cannot be obtained.

Experimental results and analysis

As seen in Table 1, the Fast-LCS algorithm consistently fails to handle DNA sequences
with a length of 10,000 to 50,000, owing to its extraordinarily lengthy runtime. At the
same time the Quick-DP algorithm is likewise incapable of dealing with DNA sequences
with a length of between 10,000 and 25,000. The results indicate that the difficulty of the
tasks does not increase as the number of sequences increases. This is because, for a fixed
length of sequences, increasing the number of sequences increases the cost of searching
all MLCS, but once the number of sequences reaches a certain level, both the number
and length of MLCS drop. As a result, the cost of searching the MLCS is reduced. The
primary reason these two algorithms take so long is that they require too much time for
non-dominated sorting (note that as the number of sequences increases, non-dominated
sorting requires a significant amount of time and space), whereas Top-MLCS and mini-
MLCS do not require non-dominated sorting and thus take much less time.

Table 4  The Lower(R)/run time(s) generated by different change in t 

Length of
sequences

R Lower(R)

10 20 50 100 150

90 8 8/0.06 8/1.63 8/2.73 8/4.13 8/5.79

95 9 8/1.28 8/1.88 9/2.60 9/4.88 9/6.68

100 10 10/1.15 10/2.28 10/4.99 10/8.77 10/10.81

105 11 11/0.77 11/2.50 11/3.47 11/10.60 11/9.37

110 11 10/1.68 11/2.74 11/4.35 11/10.19 11/13.03

115 12 10/1.55 11/2.85 11/6.75 12/11.29 12/15.77

120 13 12/1.07 12/2.53 12/4.21 13/6.38 13/10.21

Page 18 of 19Yu et al. BMC Bioinformatics (2022) 23:366

As shown in Table 2, the time consumption of Fast-LCS and Quick-DP increases dra-
matically as the length of DNA sequences increases. However the time consumption of
Top-MLCS and mini-MLCS increases considerably more slowly. Additionally, Quick-DP
runs faster than Top-MLCS and mini-MLCS when the sequence length is less than 95.
Quick-DP outperforms Top-MLCS and mini-MLCS in these circumstances due to the
short time required for non-dominated sorting.

Table 3 lists average solution lengths R , average times t in seconds until proven opti-
mality has been reached, and the number of instances that could be solved to optimality
#opt (out of ten per line) for three approaches. It can be seen that mini-MLCS is more
efficient than Top-MLCS and A* in processing small instance sets because it filters most
of the match points, it will not cause memory overflow. However, none of the instances
with |�| = 4 and d ≥ 50 could be solved to optimality by the A* and Top-MLCS due to
the memory limit. As shown in Table 4, there is one parameter t in the proposed algo-
rithm for calculating the lower bound Lower(R) of the length of MLCS. To assess the
estimate method’s robustness, we examine the influence of Lower(R) by altering the val-
ues of t throughout the experiments. The more exact the predicted lower limit Lower(R)
is, the more unnecessary match points can be found and removed from the DAG. The
experiments on problems include 20000 sequences of varying lengths between 90 and
120. As can be observed from the experimental results, for each test problem with a con-
stant length, the values of Lower(R) are very little affected by changes in the values of t.
This indicates that the effect of t on Lower(R) is negligible and that the Lower(R) estimate
approach is robust.

Conclusion
This paper proposed a unique branch elimination strategy(mini-MLCS) by identifying
the useless match points for effectively and efficiently tackling large-scale MLCS prob-
lems. Which quickly identifies unnecessary match points during the construction of the
DAG, reducing the time spent in non-dominated sorting each level of the previous DAG.
The experimental results show that it outperforms current state-of-the-art algorithms
Fast-LCS, Quick-DP and Top-MLCS, and is capable of addressing large-scale MLCS
problems. The approach takes much less time and space than Fast-LCS, Quick-DP, and
Top-MLCS, particularly for large-scale MLCS problems.
Acknowledgements
Not applicable.

Author contributions
CY implemented the algorithms, performed the experiments, analyzed the data, and wrote the paper. PL and YZ
designed the experiments and the algorithms, analyzed the data, and reviewed drafts of the paper. TR and GW analyzed
the data, and reviewed drafts of the paper. All authors have read and approved the manuscript for publication.

Funding
This work is supported by the National Natural Science Foundation of China (61772124).

Availability of data and materials
This program code can be available at https://​github.​com/​BioLa​b310/​mini_​MLCS. Biological sequences from NCBI
(http://​www.​ncbi.​nlm.​nih.​gov/​nucco​re/​11064​5304?​repor​t =​fasta) are selected as the test sets.

Declarations

Competing interests
The authors declare that they have no competing interests.

https://github.com/BioLab310/mini_MLCS.
http://www.ncbi.nlm.nih.gov/nuccore/110645304?report%20=fasta

Page 19 of 19Yu et al. BMC Bioinformatics (2022) 23:366 	

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Received: 27 January 2022 Accepted: 24 August 2022

References
	1.	 Nogrady B. How cancer genomics is transforming diagnosis and treatment. Nature. 2020;579(7800):S10–1.
	2.	 Aravanis A, Lee M, Klausner R. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell.

2017;168(4):571–4.
	3.	 Huang DS, Zhao XM, Huang GB, Cheung YM. Classifying protein sequences using hydropathy blocks. Pattern Recog-

nit. 2006;39(12):2293–300.
	4.	 Pham D. Spectral distortion measures for biological sequence comparisons and database searching. Pattern Recog-

nit. 2007;40(2):516–29.
	5.	 Ou-Yang L, Zhang X-F, Yan H. Sparse regularized low-rank tensor regression with applications in genomic data

analysis. Pattern Recognit. 2020;107(502): 107516.
	6.	 Sankoff D. Matching sequences under deletion–insertion constraints. Proc Natl Acad Sci USA. 1972;69(1):4–6.
	7.	 Hirschberg DS. Algorithms for the longest common subsequence problem. J ACM. 1977;24(4):664–75.
	8.	 Masek WJ, Paterson M. A faster algorithm computing string edit distances. J Comput Syst Sci. 1980;20(1):18–31.
	9.	 Hsu WJ, Du HW. Computing the longest common subsequence for a set of strings. BIT. 1984;24(1):45–59.
	10.	 Apostolico A, Browne S, Guerra C. Fast linear-space computations of longest common subsequences. Theor Com-

puterScience. 1992;92(1):3–17.
	11.	 Gregor J, Thomason MG. Dynamic programming alignment of sequences representing cyclic patterns. IEEE Trans

Pattern Anal Mach Intell. 1993;15(2):129–35.
	12.	 Huang R-S, Yang C-B, Tseng K-T, Peng Y-H, Ann H-Y. Dynamic programming algorithms for the mosaic longest com-

mon subsequence problem. Inf Process Lett. 2007;102(2–3):99–103.
	13.	 Yang J, Xu Y, Shang Y, Chen G, Peng Y-H, Ann H-Y. A space-bounded anytime algorithm for the multiple longest

common subsequence problem. IEEE Trans Knowl Data Eng. 2014;26(11):2599–609.
	14.	 Hakata K, Imai H. The longest common subsequence problem for small alphabet size between many strings. ISAAC.

1992;92:469–78.
	15.	 Hakata K, Imai H. Algorithms for the longest common subsequence problem for multiple strings based on geomet-

ric maxima. Optim Methods Softw. 1998;10(2):223–60.
	16.	 Korkin D. A new dominant point-based parallel algorithm for multiple longest common subsequence problem.

Technical Report TR01-148, Univ. of New Brunswick, Tech. Rep. 2001.
	17.	 Chen Y, Wan A, Liu W. A fast parallel algorithm for finding the longest common sequence of multiple biosequences.

BMC Bioinform. 2006;7(S4):S4.
	18.	 Korkin D, Wang Q, Shang Y.: An efficient parallel algorithm for the multiple longest common subsequence (MLCS)

problem. ICPP. 2008;354–363
	19.	 Wang Q, Korkin D, Shang Y. A fast multiple longest common subsequence (MLCS) algorithm. IEEE Trans Knowl Data

Eng. 2011;23(3):321–34.
	20.	 Li Y, Wang Y, Zhang Z, Wang Y, Ma D, Huang J.: A novel fast and memory-efficient parallel MLCS algorithm for long

and large-scale sequences alignments. ICDE. 2016;1170–1181
	21.	 Liu S, Wang Y, Tong W, Wei S. A fast and memory efficient MLCS algorithm by character merging for DNA sequences

alignment. Bioinformatics. 2019;36(4):1066–79.
	22.	 Wei S, Wang Y, Yang Y, Liu S. A path recorder algorithm for Multiple Longest Common Subsequences (MLCS) prob-

lems. Bioinformatics. 2020;36(10):3035–42.
	23.	 Smith T, Waterman M. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
	24.	 Peng Z, Wang Y. A novel efficient graph model for the multiple longest common subsequences (MLCS) problem.

Front Genet. 2017;8:104.
	25.	 Wang C, Wang Y, Cheung Y. A branch and bound irredundant graph algorithm for large-scale MLCS problems. Pat-

tern Recognit. 2021;119(4): 108059.
	26.	 Djukanovic M, Raidl G-R, Blum C. finding longest common subsequences: new anytime A* search results. Appl Soft

Comput. 2020;95: 106499.
	27.	 Wang Q, Pan M, Shang Y. A fast heuristic search algorithm for finding the longest common subsequence of multiple

strings. AAAI. 2010;24(1):1287–92.
	28.	 Judea P. Heuristics-intelligent search strategies for computer problem solving. Fri. 1984;1(1):382.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A fast and efficient path elimination algorithm for large-scale multiple common longest sequence problems
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Related work
	Definitions of LCSMLCS problems
	Dynamic programming approaches
	Dominant point-based approaches

	The proposed mini-MLCS
	The main framework of mini-MLCS
	Estimation of the lower bound Lower(R) in a short time
	Estimation of the upper bound with efficiency
	Construct mini-DAG
	Mini-MLCS algorithm

	Time and space complexity
	Mini-MLCS time complexity
	Mini-MLCS space complexity

	Experiments and analysis
	Experimental setups and compared algorithms
	Experimental results and analysis

	Conclusion
	Acknowledgements
	References

