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Abstract 

Background:  Accurately predicting drug-target binding affinity (DTA) in silico plays 
an important role in drug discovery. Most of the computational methods developed 
for predicting DTA use machine learning models, especially deep neural networks, and 
depend on large-scale labelled data. However, it is difficult to learn enough feature rep-
resentation from tens of millions of compounds and hundreds of thousands of proteins 
only based on relatively limited labelled drug-target data. There are a large number of 
unknown drugs, which never appear in the labelled drug-target data. This is a kind of 
out-of-distribution problems in bio-medicine. Some recent studies adopted self-super-
vised pre-training tasks to learn structural information of amino acid sequences for 
enhancing the feature representation of proteins. However, the task gap between pre-
training and DTA prediction brings the catastrophic forgetting problem, which hinders 
the full application of feature representation in DTA prediction and seriously affects the 
generalization capability of models for unknown drug discovery.

Results:  To address these problems, we propose the GeneralizedDTA, which is a new 
DTA prediction model oriented to unknown drug discovery, by combining pre-training 
and multi-task learning. We introduce self-supervised protein and drug pre-training 
tasks to learn richer structural information from amino acid sequences of proteins and 
molecular graphs of drug compounds, in order to alleviate the problem of high vari-
ance caused by encoding based on deep neural networks and accelerate the con-
vergence of prediction model on small-scale labelled data. We also develop a multi-
task learning framework with a dual adaptation mechanism to narrow the task gap 
between pre-training and prediction for preventing overfitting and improving the gen-
eralization capability of DTA prediction model on unknown drug discovery. To validate 
the effectiveness of our model, we construct an unknown drug data set to simulate the 
scenario of unknown drug discovery. Compared with existing DTA prediction models, 
the experimental results show that our model has the higher generalization capability 
in the DTA prediction of unknown drugs.

Conclusions:  The advantages of our model are mainly attributed to two kinds of pre-
training tasks and the multi-task learning framework, which can learn richer structural 
information of proteins and drugs from large-scale unlabeled data, and then effectively 
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integrate it into the downstream prediction task for obtaining a high-quality DTA pre-
diction in unknown drug discovery.

Keywords:  DTA prediction, Pre-training task, Multi-task learning, Dual adaptation 
mechanism

Background
Drug discovery is very inefficient by traditional wet laboratory experiments [1, 2]. It usu-
ally spends 10–17 years and billions of dollars on research and experimental processes 
[3]. Such an inefficient process is obviously difficult to meet the needs of rapidly devel-
oping diseases, such as COVID-19. In order to improve the efficiency of drug discovery, 
predicting drug-target interaction (DTI) in silico has attracted more and more attention 
[2, 4–7]. These computational DTI prediction methods not only have low cost but also 
can greatly accelerate the process of drug development [8].

Predicting drug-target binding affinity (DTA) [9] is a kind of special DTI prediction 
task. Unlike traditional DTI prediction based on binary classification, DTA predic-
tion can obtain the quantitative binding affinity between drugs and targets, which pro-
vides more detailed descriptions about drug-target interactions. Related studies mainly 
adopted machine learning models to realize a two-stage modeling process, including 
encoding and decoding. The encoding process learns feature representations from drugs 
and various targets, such as proteins. The decoding process predicts the binding affin-
ity based on these feature representations. Early studies often adopted shallow machine 
learning models to learn feature representations for DTA prediction. SimBoost [10] cal-
culated the affinity similarity between drug compounds and targets by using collabora-
tive filtering and then used the similarity as the feature vector to predict DTA. KronRLS 
[11] used kernel-based methods to generate molecular descriptors of drugs. With the 
rapid development of deep learning, the deep neural networks have been widely used 
in DTA prediction, especially in the encoding process. DeepDTA [12] introduced deep 
learning into DTA prediction for the first time, which used convolutional neural net-
work (CNN) to generate 1D representations of drugs and proteins. GraphDTA [13] used 
the open source chemical informatics software RDKit to construct the molecular graph 
of drug compounds instead of the compound string, and learnt the feature vector of 
drug compounds by using graph neural network. MGraphDTA [14] built a super-deep 
GNN with 27 graph convolutional layers to capture the local and global structure of the 
compound simultaneously. MATT​_DTI [15] encoded the correlations between atoms of 
drug compounds by a relation-aware self-attention block and modeled the interaction 
of drug representations and target representations by the multi-head attention block. 
DeepNC [16] learnt the features of drugs and targets by the layers of GNN and 1-D con-
volution network, respectively. MINN-DTI [17] combined an interacting-transformer 
module with an improved Communicative Message Passing Neural Network (CMPNN) 
to better capture the two-way impact between drugs and targets. Besides feature coding 
of drugs and proteins, feature aggregation has also attracted attention. FusionDTA [18] 
utilized a novel muti-head linear attention mechanism to aggregates global information 
based on attention weights.

All of the above studies are based on labelled drug-target data sets, such as Davis 
[19] and Kiba [20]. Compared with tens of millions of compounds and hundreds of 
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thousands of proteins, labelled drug-target data are relatively limited. The Davis data 
set [19] only contains 72 drugs and 442 targets. The KEGG data set [21] only has a 
total of 4797 drug-target pairs. However, the ZINC15 database [22] contains over 230 
million compounds in ready-to-dock. It is difficult to learn feature representations 
covering all drugs and compounds only based on relatively small labelled drug-target 
data. Aiming at this problem, Hu et al. [23] performed the protein pre-training task 
on large amounts of unlabelled data to obtain the robust protein encoding model with 
enhanced structural information of amino acid sequences, and then fine-tuned the 
encoding model on the decoding process, i.e., the DTA prediction modeling process, 
for fitting the relatively small labelled drug-target data. Owing to enhanced structural 
information, their DTA prediction model achieved excellent results.

However, Hu et al.’s model only obtained structural information about amino acid 
sequences by using the protein pre-training task and neglected structural informa-
tion of molecular graphs of drug compounds. More importantly, there is a task gap 
between pre-training and DTA prediction. The goal of protein pre-training is to 
accurately predict masked amino acids based on context information of amino acid 
sequences, but the goal of DTA prediction is to accurately calculate the binding affin-
ity between drug compounds and proteins. Hu et al. adopted a sequential structure to 
integrate the pre-training task and the DTA prediction task [23]. The task gap between 
them can bring the catastrophic forgetting problem [24]. As the number of fine-tun-
ing iterations increases, the downstream prediction model increasingly focuses on 
the drugs and proteins appearing frequently in the labelled drug-target training data, 
resulting in poor prediction results on those unknown drugs, which never appear in 
the labelled drug-target data. This is a kind of out-of-distribution (OOD) problems in 
biomedicine [25]. The DTA prediction model has the poor generalization capability 
[26] on unknown drug discovery. This problem is particularly serious when labelled 
data are obviously smaller than unlabeled pre-training data.

However, existing studies on DTI and DTA prediction did not pay special atten-
tion to these unknown drugs. To our knowledge, the poor generalization ability of 
model in unknown drug discovery has not been studies. In order to prove the exist-
ence of this problem, we used the Davis data set to perform a DTA prediction task for 
unknown drug discovery. The original training and test sets were divided referring to 
Öztürk et al.’s work [13]. We randomly selected 20% of drugs in the original training 
set, a total of 14 kinds of drugs, as new drugs. All corresponding drug-target pairs 
were deleted from the original training set to construct an unknown drug training set. 
The corresponding 5178 drug-target pairs were extracted from the original test set to 
construct an unknown drug test set. The DTA prediction task in unknown drug dis-
covery was performed on the unknown drug training and test sets. Using GraphDTA 
[12] to iterate 1000 times, the results are as follows.

Figure 1 shows the convergence curve of loss function in 1000 times of iterations. 
The horizontal axis represents the number of iterations and the vertical axis repre-
sents the value of loss function. As shown in this figure, the losses on the unknown 
drug training set and the original test set decrease significantly in the first 200 itera-
tions, the loss on the unknown drug test set fluctuates repeatedly at 0.85 and has no 
downward trend. This indicates that GraphDTA is over fitted and lacks the sufficient 
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generalization capability for unknown drug discovery. It is necessary to carry out spe-
cial studies on this problem.

In previous studies, overfitting of model can be intervened by means of data enhance-
ment, feature removal, and so on. For the DTA prediction task, data enhancement is 
too expensive because it needs to increase labelled drug-target data. Feature removal 
may reduce the accuracy of model and deviates from the original intention of feature 
enhancement of pre-training. Based on the above observations, this study proposes a 
new DTA prediction model, called GeneralizedDTA, by combining self-supervised pre-
training and multi-task learning. The main contributions can be summarized as follows: 

(1)	 Firstly, this study introduces both protein and drug pre-training tasks into the DTA 
prediction task. By using these two kinds of pre-training tasks, structural informa-
tion of both amino acid sequences of proteins and molecular graphs of drug com-
pounds is learnt and integrated in the DTA prediction task for the first time.

(2)	 Secondly, this study develops a multi-task learning model with a dual adaptation 
mechanism for alleviating the catastrophic forgetting problem of pre-training 
parameters. By using the MAML-based updating strategy, pre-training parameters 
are adapted by a few gradient updates, and then with the updated parameters, the 
whole model is trained in the downstream DTA prediction task for accelerating 
convergence and preventing the model from falling into local optimality.

(3)	 Thirdly, this study constructs a group of unknown drug data sets to simulate a sce-
nario of unknown drug discovery and performs comparative experiments on these 
data sets. The experimental results show that the generalization capability of our 
model has been significantly improved compared with existing DTA prediction 
models. It can be better adapted to DTA prediction in unknown drug discovery.

Fig. 1  Convergence analysis of GraphDTA in unknown drug discovery
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Methods
In order to realize DTA prediction in unknown drug discovery, this study proposes the 
GeneralizedDTA model by combining self-supervised pre-training and multi-task learn-
ing. Two kinds of protein pre-training tasks are adopted to learn structural information of 
amino acid sequences. A kind of new drug pre-training task is designed to learn structural 
information of molecular graphs of drug compounds. In order to alleviate the catastrophic 
forgetting problem of pre-training parameters, a multi-task learning framework with a dual 
adaptation mechanism is developed to prevent the prediction model from falling into over-
fitting. Figure 2 gives the model architecture of GeneralizedDTA, which includes four mod-
ules: the protein encoding layer, the drug encoding layer, the DTA prediction layer, and the 
multi-task learning framework.

Protein encoding layer

The protein encoding layer encodes amino acid sequences of proteins as vectors by using 
protein pre-training tasks. Inspired by BERT [27], this study adopts a transformer model 
with the multi-head attention as the encoder to receive amino acid sequences. Given a 
amino acid sequence t = [t1, . . . , tn] where ti ∈ {21 amino acid types} , the transformer 
model converts it into z = [z1, . . . , zn] as follows:

(1)z = Transformer(Q,K ,V ; t) = Concat(head1, . . . , headn)W
◦

Fig. 2  The model architecture of GeneralizedDTA
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where Q ∈ Rd1×d2 ,K ∈ Rd1×d2 ,V ∈ Rd1×d2 are the parameters of attention, n is the num-
ber of heads, Wo ∈ Rd1 × d1 is the weight of heads and dk  is the dimension number 
of Q. The self-attention function is computed on the dot products of each queries with 
all keys simultaneously, and divided by a softmax function to obtain the weights on the 
values [28]. It can be simplified as a parameterized function Transformer ( • ) with the 
parameter set θ :

Based on the transformer model, this study adopts two pre-training tasks to obtain 
structural information of amino acid sequences of proteins.

Masked Language Modeling (MLM) Task [28]: this task screens some amino acids at 
random and predicts their types. Given a masked amino acid sequence t and a masked 
amino acid set m = {m1,m2, . . . ,mN } , the MLM decoder calculates the log probability 
for t as follows:

where FC(•) is a fully connected neural network (FC) with the parameter θ1 and 
m′ =

{

m′
1,m

′
2, . . . ,m

′
N

}

 represents the predicted amino acid set for the whole masked 
amino acid set. Then the log-likelihood function is used as the evaluation metrics for the 
MLM task:

By the above MLM task, the transformer model could effectively learn the bidirectional 
contextual representation of amino acid sequences of proteins.

Same Family Prediction (SFP) Task [29, 30]: this task enables the model to determine 
if two proteins belong to the same family. In order to pre-train the transformer model 
with the SFP task, this study selects two amino acid sequences t1 and t2 from the Pfam 
dataset. Random sampling is adopted to ensure the probabilities that they come from 
the same class and different classes are the same. Aiming at the protein pair 

〈

t1, t2
〉

 , a FC 
with dropout [31] is used to calculate their similarity value:

where θ2 ∈ R
|z|×2 is the parameter of FC, zp =

[

z11, · · · , z
1
11
, z21, · · · , z

2
n2

]

z ∈ R
|z|×1 is the 

vector representation of 
〈

t1, t2
〉

 and ĉ ∈ R
2×1 is the predicted similarity value, i.e., a 

probability that the protein pair belongs to the same protein family. The SFP task trains 

(2)headi = Attention (Q,K ,V )

(3)Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

(4)z = Transformer (θ; t), θ =
{

Q,K ,V ,Wo
}

(5)z = Transformer (θ; t)

(6)m′ =FC(θ1; z)

(7)LMLM(θ , θ1;m) = −

[

N
∑

i=1

m′
i lnmi +

(

1−m′
i

)

ln (1−mi)

]

(8)ĉ = FC
(

θ2; zp
)
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the model to minimize the cross-entropy loss which is designed to deal with predicted 
errors on probabilities. Therefore, this study adopts the log-likelihood function to meas-
ure the SFP loss:

As the transformer model is asked to produce the higher similarity value for proteins 
from the same family, the SFP task enables the transformer model to better absorb global 
structural information of amino acid sequences of proteins.

Drug encoding layer

The drug encoding layer encodes molecular graphs of drug compounds as vectors by a 
brand-new drug pre-training task. It adopts GCN [32] to mine potential relationships 
from molecular graphs of drug compounds.

Given a molecular graph of drug compound G = (V , E ,X ,Z) where V is the chemical 
atom set, E is the chemical bond set, X ∈ R

|ν|×dv and Z ∈ R
|ε|×de are the atom and bond 

feature sets, respectively. GCN is mainly involved with two key computations “update” 
and “aggregate” for each atom at every layer. They can be represented as a parameterized 
function �(•) with the parameter ψ :

where u, v ∈ V are two chemical atoms, zuv is the feature vector of the chemical bond 
(u, v), h0v = xv ∈ X  is the input of GCN and represents the feature of atom v, hlv repre-
sents the feature of atom v on the l-th layer of GCN, A is the adjacency matrix of drug 
compound G , and Nv is the neighborhood atom set of atom v.

In order to get a representation of drug compound G , the POOLING function on the 
last GCN layer is used to transform the molecular graph into a vector:

where hG is the vector representation of drug compound G , POOLING is a simple pool-
ing function like the max or mean-pooling  [33, 34]. For simplicity, we represent GCN as 
follows:

Based on the GCN model, this study designs a new pre-training task to learn structural 
information of molecular graphs of drug compounds.

Drug Pre-training (DP) Task: this new task is designed to improve the representa-
tion learning capability on drugs by encouraging the generation of similar embeddings 
for neighboring chemical atoms in the molecular graph of drug compounds [35]. The 
aggregation is a key computation in each layer of GCN. In compound-level aggrega-
tion, the neighboring chemical atoms aggregate their information based on Eq. (10) [36, 
37]. For each chemical atom v ∈ V , GCN gets its representation by hv and �(•) in Eq. 
(10). Therefore, as shown in Fig.3, given a random atom bond u as the center node, the 

(9)LSFP(θ , θ2; t) = − ln p(n = ni | θ , θ2), ni ∈ [ same family, not same family]

(10)
h
l
v = �(ψ;A,X ,Z)l

= UPDATE
(

h
l−1
v , AGGREGATE

({(

h
l−1
v ,hl−1

w , zwv

)

: u ∈ Nv

}))

(11)hG = POOLING
({

h
l
v | v ∈ V

})

(12)hG = GCN (ψ;G)



Page 8 of 17Lin et al. BMC Bioinformatics          (2022) 23:367 

self-supervised loss function [38] is chosen to realize the DP task, i.e., encourage similar 
embeddings for neighboring chemical atoms:

where v is the context anchor node which is directly connected to the center node u, v′ 
is the negative context node which is not directly connected to u, ψ is the parameter of 
GCN, and σ is the sigmoid function. By 5 layers of GCN, each atom embedding absorbs 
almost all small local structures in the molecular graph [39, 40].

DTA prediction layer

The DTA prediction layer is to associate the drug compound with the protein for pre-
dicting their binding affinity. This study adopts a FC for DTA prediction. For a given 
drug-protein pair 〈G, t〉 where G is a molecular graph of drug compound and t is an 
amino acid sequence, the corresponding drug compound vector hG and the protein vec-
tor zp can be obtained by the drug encoding layer and the protein encoding layer. Then, 
the process of predicting their binding affinity ŷ is shown as follows:

where γ is the parameter of full connection layers and Concat ( • ) indicates that the input 
is the concatenated vector of hG and zp.

The DTA prediction task trains the model to minimize the loss function. This study 
adopts the mean squared error (MSE) as the loss function:

where ŷ is the predicted binding affinity of drug-protein pair and y is the true value, 
θ ,ψ , γ are combined as model parameters.

(13)L atom (ψ;G) =
∑

(u,v)∈G

− ln
(

σ

(

h
⊤
u hv

))

− ln
(

σ

(

−h
⊤
u hv′

))

(14)ŷ = FC
(

γ ;Concat
(

hG , zp
))

(15)L affinities (θ ,ψ , γ ; �G, t�) =
1

2
(ŷ− y)2

Fig. 3  The drug pre-training based on context prediction
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Multi‑task learning framework with a dual adaptation mechanism

This study adopts multi-task learning to link the encoder, i.e. the pre-training tasks 
and the decoder, i.e. the DTA prediction task, for preventing overfitting caused by 
the local optimality under a relatively small supervised samples. In order to make 
the overall model bias against the main task DTA prediction, this study adopts the 
updated strategy of MAML [41].

The drug pre-training task is defined as the query set. For this task, we adjust the 
prior parameter ψ of compound-level aggregation with one or a few gradient descent 
steps. The learning rate is set to α for dual adaptation. The new prior parameter ψ ′ can 
be obtained as follows:

Then, the FC parameter γ in the DTA prediction layer, which is defined as the support 
set, will be updated as follows:

After that, all the parameters are updated through the backpropagation of the overall 
loss function of the multi-tasking learning. We define the overall loss function as follows:

where � atom set manually is the weight of the loss function of drug pre-training task. 
This study updates all learnable parameters by gradient descent. Before the pre-training 
drug task, we record the original model parameters, and take the parameters (query set) 
updated for the first time in pre-training as the prior parameters of the subsequent DTA 
prediction. The comprehensive loss function of DTA prediction and the drug pre-training 
task is taken as the objective function of dual adaptation. Subsequent original parameters 
are updated through the multi-task learning framework. Different from the frozen-strat-
egy, the updated model parameters are original parameters rather than prior parameters.

The dual adaptation mechanism needs to save all learnable parameters in the pre-
training task. For multi-head transformers learning, this will bring a huge increase in 
training time. Furthermore, this study mainly focuses on unknown drugs and intro-
duces the drug pre-training task into the DTA prediction. Therefore, the multi-task 
learning framework in this study only combines the drug pre-training task with the 
DTA prediction task by using the above dual adaptation mechanism.

Results
Data preparation

This study performed the pre-training tasks on the following two datasets:

•	 Protein pre-training dataset: The Pfam dataset [42] was used for protein pre- train-
ing. It was produced at the European Bioinformatics Institute using a sequence 

(16)ψ ′ = ψ − α
∂L atom (ψ;G)

∂ψ

(17)γ ′ = γ − α
∂L affinities

(

ψ ′, γ ; (G, t)
)

∂γ

(18)L all = � atom L atom + L affinities
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database, which is based on UniProt. Over 21M amino acid sequences of proteins 
were clustered into 16,479 families based on the sequence similar- ity. This study 
performed two protein pre-training tasks on this dataset for learning structural 
information of amino acid sequences.

•	 Drug pre-training dataset: The ZINC15 database [22] was used for drug pre-training. 
It is provided by the Irwin and Shoichet Laboratories at the University of California. 
In this study, 2 million unlabeled compounds was used for learning structural infor-
mation of molecular graphs of drug compounds by the drug pre-training task.

The Davis  [19] and Kiba  [20] were selected for performance evaluation. The Davis 
dataset includes 30056 drug-target pairs and is involved with 442 proteins and 68 
compounds. The Kiba dataset includes 118254 drug-target pairs and is involved 
with 229 proteins and 2068 compounds. Their binding affinities are indicated by the 
relevant inhibitors with their respective dissociation constant values. A group of 
unknown drug data sets were constructed for simulating the scenario of unknown 
drug discovery. The process includes the following two steps:

•	 Unknown drug compound/protein selection: This study selected unknown drug 
compounds and proteins based on the similarity. Referring to  [43], we performed 
the substructural features based k-means algorithm on all the drug compounds 
and selected outliers as unknown drug compounds. Referring to  [25], we selected 
unknown proteins based on the Pfam family. The proteins from the smallest 42 fami-
lies were selected as unknown proteins.

•	 Unknown dataset construction: Those drug-target pairs containing any unknown 
compounds or any unknown protein were extracted as the unknown test set 
(unknown-TeS). The corresponding drug-target pairs were removed from original 
training set  [12] and the remaining data were used to construct the unknown train-
ing set (unknown-TrS).

The distribution of data is shown in Table  1. Similarly, we can obtain the unknown 
drug data sets from Kiba, as shown in Table 2. After constructing the unknown drug 
data sets, we removed all unknown drug compounds from the drug pre-training data-
set to avoid data leakage.

Model parameters

Protein pre-training tasks were first performed alone, and then the drug pre-training 
task and the DTA prediction task were carried out at the same time, by using the 

Table 1  The data distribution in the unknown drug data sets from Davis

Number of proteins Number of drugs Number of 
drug-target 
pairs

All data 442 68 30056

unknown-TrS 369 56 20664

unknown-TeS 442 68 10409
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multi-task learning framework and dual adaptation mechanism. For protein encod-
ing, the dimension size of amino acid vector was set to 20, the number of self-atten-
tion heads was 12, the number of hidden layers was 12, and the dimension size of 
hidden layer was 768. For drug encoding, the lay number of GCN was set to 5, and 
the dimension size of hidden layer was 300. For DTA prediction, the layer number of 
FC was set to 3. For multi-task learning, the learning rate was set to 0.001 and the 
weight of drug pre-training was set to 0, 0.5, 1.0 and 2.0, respectively.

Baseline methods

In order to prove the validity of model, this study compares the proposed General-
izedDTA with the following baseline methods:

•	 DeepDTA [12]: It used CNN and the pooling architecture to capture the poten-
tial interaction features between proteins and drugs. Research showed that the 
CNN network with a smaller number of parameters can be used to test overfit-
ting of transformer. Therefore, this study adopted three layers of convolution for 
drug and protein encoding of DeepDTA, and the kernel sizes were set to 4,6,8, 
respectively.

•	 GraphDTA [13]: It represented SMILES strings of drugs as short ASCII strings. 
In this study, drug encoding of GraphDTA adopted three layers of graph convo-
lution and the numbers of feature dimensions of layers were set to 78,156,312, 
respectively. This kind of incremental parameter design can enhance the infor-
mation transfer between atoms.

•	 SAGDTA  [44]: It exploited the self-attention mechanism on drug molecular 
graphs to obtain efficient representations of drugs. In this study, features of each 
atom node in the molecular graph and the SAG used the hierarchical pooing 
architecture with 3 blocks which has been demonstrated to absorb global infor-
mation better.

•	 MGraphDTA [14]: It adopted a deep multiscale graph neural network based on 
chemical intuition for DTA prediction. A super-deep GNN with 27 graph con-
volutional layers was built to capture the local and global structure of the com-
pound simultaneously. In this study, learning ration and embedding size were set 
to 5e-4 and 128 respectively.

Table 2  The data distribution in the unknown drug data sets from Kiba

Number of proteins Number of drugs Number of 
drug-target 
pairs

All data 229 2068 118254

unknown-TrS 191 1723 82524

unknown-TeS 229 2068 32490
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Evaluation metrics

This study adopted MSE and R-squared ( R2 ) [45] to evaluate the prediction results of the 
model. MSE and R2 are well-defined metrics to measure how close the fitted line is in the 
regression task. They can be calculated as follows:

where ŷi is the true value of binding affinity of the i-th drug-target pair, ŷ is the corre-
sponding predicted value, and ȳ is the average of true values of all binding affinities.

Performance evaluation on predicting drug‑target binding affinity

Tables 3 and 4 give experimental results. It can be seen that SAGNet and our model with 
� atom = 0 have the worst performance in two datasets. It indicates that deeper networks 
without additional auxiliary constraints perform worse on unknown data. Our model 
with � atom = 0 , in which � atom = 0 means the unbinding between drug pre-training 
and DTA prediction, had the biggest MSE. This indicates that overfitting exists due to 
catastrophic forgetting between drug pre-training and DTA prediction. It is necessary to 
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n
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∑

i

(
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Table 3  Experimental results in the unknown drug data sets from Davis

Model MSE R
2

DeepDTA 1.0271 0.1454

GraphDTA 0.8872 0.2037

SAGDTA 1.1324 0.1654

MGraphDTA 0.8532 0.2287

Our method ( � atom = 0) 1.2764 0.1512

Our method ( � atom = 0.5) 0.8467 0.2402

Our method ( � atom = 1.0) 0.9041 0.1886

Our method ( � atom = 2.0) 0.8603 0.2279

Table 4  Experimental results in the unknown drug data sets from Kiba

Model MSE R
2

DeepDTA 0.5437 0.3605

GraphDTA 0.4950 0.2953

SAGDTA 0.6237 0.2311

MGraphDTA 0.4667 0.3766

Our method ( � atom = 0) 0.7311 0.2039

Our method ( � atom = 0.5) 0.4331 0.2831

Our method ( � atom = 1.0) 0.4582 0.3906

Our method ( � atom = 2.0) 0.6067 0.1781
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develop a multi-task learning framework for binding pre-training and prediction mod-
els. GraphDTA [13] achieved the better performance than DeepDTA, indicating that 
structural information based on the molecular graph of drug compounds are valuable 
for DTA prediction. MGraphDTA [14] achieved the best results in four baseline meth-
ods. This proves once again the importance of structure information of the compounds, 
which is the important motivation to introduce the graph-based drug pre-training 
task in this study. Our model with � atom = 0.5 and � atom = 1.0 achieved the best per-
formance in terms of all evaluation metrics in the Davis dataset and the Kiba dataset 
respectively. This shows that our model, which adopts a new drug pre-training task and 
combines it with the DTA prediction task by a multi-task learning framework, has better 
generalization capability in unknown drug discovery. But, different optimization weights 
may be required for different data sets. The reason can be attributed to the different 
affinity measurement methods in different datasets.

Figure 4 gives convergence analysis in the unknown-TeS from Davis. As shown in this 
figure, the proposed GeneralizedDTA can effectively converge on the unknown-TeS 
from Davis and has the highest generalization capability.

Discussion
Ablation study

The proposed GeneralizedDTA combines pre-training and multi-task learning. It is 
involved with four core components, including protein pre-training, drug pre-training, 
multi-task framework and dual adaptation mechanism. In order to analyze their effec-
tiveness, an ablation study is designed with 4 ablated variants, without protein pre-
training, without drug pre-training, without multi-task framework and without dual 
adaptation mechanism. The variant without dual adaptation mechanism is to finish pre-
training firstly, and then transfer the pre-trained components into DTA. Experiments 
were performed on the unknown drug data sets from Davis.

Figure 5 gives the experimental results. As shown in this figure, our method is superior 
to all variants. This indicates that all of four components are effective for improving DTA 
prediction. The effect of the drug pre-training is biggest and that of the protein pre-train-
ing is smaller. This indicates that the structural information of drug compounds is more 

Fig. 4  Convergence analysis in the unknown-TeS from Davis
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important in DTA prediction than that of proteins. Figure 5 also shows that, the effect 
of the deep learning model can be significantly improved under the constraint of multi-
task framework. Dual adaptation mechanism can prevent local optimality in parameter 
updating of deep learning model and improve performance of DTA prediction.

Comparative analysis on pre‑training models

Pre-training is a core component of GeneralizedDTA. This study adopted transformer-
based protein pre-training and GCN-based drug pre-training. At present, there are sev-
eral state-of-the-art protein pre-training models and drug pre-training models:

•	 ESM  [46]: It is a protein pre-training model which uses a very large deep model 
framework with self-supervised task by masked language modeling and homology 
information relevant modeling.

•	 DISAE [47]: It is also a protein pre-training model which utilizes all protein 
sequences and their multiple sequence alignment to capture functional relationships 
between proteins without the knowledge of structure and function.

•	 ContextPred  [48] : It is a drug pre-training model which explores distribution of 
graph structure in the node-level self-supervised task and sample subgraphs to pre-
dict their surrounding graph structures.

•	 GROVER  [49]: It is also a drug pre-training model which uses local random walk-
based objectives to learn rich structural and semantic information by self-supervised 
tasks in node, edge and graph level.

In order to evaluate pre-training of GeneralizedDTA, this study uses the above pre-
training models to replace the pre-training components of GeneralizedDTA respectively. 
Experiments were performed on the unknown drug data sets from Davis.

Figure 6 gives the experimental results. As shown in the figure, for protein pre-train-
ing, the DTA prediction result based on our transformer-based protein pre-training 

Fig. 5  Experimental results in the ablation study
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differs little from that based on ESM and DISAE. This indicates that these state-of-the-
art protein pre-training models, such as ESM, can slightly improve DTA prediction, but 
not significantly. Considering the demand of computing resources, our protein pre-
training is appropriate, especially in low resource environments.

Our GCN-based drug pre-training adopts the node-level self-supervised task. By ran-
domly masked nodes and edge attribute [35], the GCN model can be trained to gen-
erate graph embedding which can distinguish the similarity of atoms. Based on this 
kind of graph embedding, the capability of downstream DTA prediction model can 
be effectively improved. As shown in Fig.  6, the DTA prediction results based on our 
GCN-based drug pre-training are similar to that based on ContextPred, but significantly 
better than GROVER. Because ContextPred also adopts the node-level self-supervised 
task, this indicates that node-level adaption surrounding neighbors in our GCN-based 
drug pre-training is more suitable for DTA prediction than the random walk strategy in 
GROVER. The reason may be that the random walk strategy pays too much attention to 
downstream irrelevant information.

The results of our model with � atom = 0 in Table 3 show that, if unbinding pre-train-
ing with prediction, the model can learn existing drugs too finely because of lacking of 
constraints, and lost the prediction capability on unknown drugs. Therefore, this study 
develops a multi-task learning framework with a dual adaptation mechanism to bind the 
drug pre-training and DTA prediction. In our dual adaptation mechanism, the param-
eters of GCN are not fixed every time. This helps to avoid falling into local optimization 
brought by the small labelled data set. We also use the loss function of the pre-training 
task as the regular term of the DTA prediction task to further alleviate overfitting of 
model. Therefore, the multi-task learning framework with a dual adaptation mechanism 
is most critical factor for improving the generalization capability of model on the DTA 
prediction of unknown drugs. The above comparative analysis on pre-training models 
also shows that only replacing the pre-training models cannot significantly improve 
DTA prediction. Considering the calculation complexity, the study adopts current trans-
former-based protein pre-training and GCN-based drug pre-training.

Conclusion
Digging into the benchmark dataset Davis, we notice that previous studies on DTA 
prediction didn’t consider the generalization capability of model in unknown drug dis-
covery. To address this challenge, this study proposes a new DTA prediction model 
called GeneralizedDTA. We introduce two protein pre-training tasks and a brand-new 
drug pre-training task to learn richer structural information of proteins and drugs, for 
accelerating the convergence of model on small-scale labelled data. We also develop a 

Fig. 6  Comparative Analysis with different pre-training in unknown drug discovery
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multi-task learning framework with a dual adaptation mechanism to prevent the pre-
diction model from falling into overfitting and improve the generalization capability 
of model in unknown drug discovery. A group of comparative experiments on the new 
unknown drug data sets validate the effectiveness of our model for DTA prediction in 
unknown drug discovery.
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