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Background
As members of the Orthomyxoviridae family, influenza A viruses (IAV) are negative-
sense, single-stranded RNA viruses with a segmented genome that are occasionally 
deadly to humans and have been confirmed as causes of multiple pandemics resulting in 
large numbers of deaths [2]. Transmission to humans continually remains a global con-
cern due to IAV’s vast genetic diversity, potential for rapid evolutionary change, ability 
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to transmit among hosts and since they are widely circulating among migrating wild 
aquatic birds [3]. When a new IAV strain gains the ability to infect humans, it is usually 
not possible for the human immune system to respond fast enough to avoid severe infec-
tions, thus it is extremely important to monitor and predict IAV potential for transmis-
sion to humans. The establishment of IAV in humans is a multi-step process including 
transmission, replication, and adaptation which starts with sequence mutations. Since 
the amino acid sequences are usually one of the most accessible types of information 
from IAV databases, several computational methods have been developed to identify 
interspecies transmission candidate sites at the sequence level. The idea has been to 
use both phylogenetic and sequence alignment analyses to identify the essential amino 
acid mutations for proteins that are characteristic of the species origin of the sequences 
[4–6].

Several computational approaches have been considered for the host-specific signa-
ture identification. One approach is to measure the degree of uncertainty at a location 
using the proportion of amino acid residues of the aligned sequences from different 
hosts and decide whether it is a signature by comparing the dominant amino acid types. 
Chen et al. [7] first described such essential positions on aligned IAV sequences as host-
specific genomic signatures and used an entropy measurement to locate avian-human 
signatures on each of 8 strains. Finkelstein et al. [8] introduced an approach to use statis-
tical analyses of residue frequencies from pandemic H5N1 influenza viruses to identify 
persistent host markers. Another approach is to examine the strength of dependence/
association between the amino acid mutations and hosts, using methods based on 
mutual information (MI) or the adjusted rand index (ARI) [9]. A similar idea was also 
used by Hu et al. [3] with the measurement based on the adjusted rand index (ARI) to 
evaluate the ability of characteristic locations to distinguish between different hosts. 
In addition, several machine learning approaches, such as neural nets, support vector 
machines, random forests and rule based modeling have been used for signature identi-
fication and predictions [4, 6, 10–13].

Despite the fact that these general approaches have proven to be useful in signature 
evaluation, all existing methods are based only on the proportion of amino acid residue 
types. With these approaches, all 20 standard amino acid types are implicitly assumed 
to be equally related to each other which is not a reasonable assumption [14–18]. Gen-
erally, the degree of uncertainty is directly based on how conserved the substitutions 
are within the given location since by definition, conservative substitutions vary little in 
terms of their biochemical properties.

Many methods have been proposed to understand the similarities among amino acid 
residues or to model their substitutions. The earliest approach was based on measure-
ment or evaluation of various physical–chemical properties of amino acid residues [14]. 
Other methods that are based on empirical measurements of amino-acid replacement 
frequencies have been developed. Dayhoff et al.’s PAM model [19] was estimated using 
a counting approach and a similar model-based method has also been used by Jones 
et al. [16], Gonnet  et al. [17] and Mueller et al. [20]. In 1992, Henikoff and Henikoff [18] 
introduced a direct way of counting amino-acid replacement frequencies, usually known 
as the BLOSUM scoring matrix, which avoids the extrapolation problems of the PAM 
model. More recently, many other amino acid replacement/substitution matrices have 
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been described for sequence comparison and alignment and can also be considered in 
signature identifications [21–23].

We argue that approaches for host specific signature identification are improvable 
since they ignore the differences in similarities/substitution rates among the amino 
acid types. In this study, we propose a novel approach of adjusting the existing Shan-
non entropy measurement used for host-specific signature identification using both 
the proportions of amino acid residues and the similarities among them to identify the 
host-specific signatures. Specifically, we propose an adjustment coefficient derived from 
the BLOSUM matrix and incorporate the amino acid substitution information into the 
host-specific signature identification. This coefficient is used to construct an adjusted 
entropy measurement for signature identification. The adjustment is made using 
amino acids similarity/substitution rates, which we call the similarity coefficient (SC). 
The SC represents the average conservativeness of the substitutions among the amino 
acid residue types from a certain location. Our adjustment magnifies the entropy when 
amino acid substitutions have a lower level of similarity and reduces the entropy when 
a higher level of similarity is observed. We use simulated and real datasets to evaluate 
our method regarding host-specific signature identification as well as to compare the 
adjusted approach with Chen et al.’s [7] unadjusted entropy-based method. Mutations in 
the polymerase genes such as PB2 are known to play a major role in avian influenza virus 
adaptation to mammalian hosts. We thus focus on the analysis of PB2 protein sequences 
and identify host specific PB2 amino acid signatures. The results show that the proposed 
adjusted entropy method aids with monitoring essential IAV protein mutations which 
can provide useful information in virus monitoring and vaccine development.

Results and discussion
Method evaluation and threshold selection based on an H5N1 dataset

Table  1 shows an example of amino acid composition and corresponding proportions 
at two hypothetical positions of an alignment of 2000 IAV PB2 protein sequences, 
with Shannon entropy, SC (similarity coefficient) and adjusted entropy computed as 
described in the methods section.

In this section, we compare the host-specific signature identification sensitivity per-
formance using the unadjusted and adjusted entropy at two threshold values through 
the analysis of PB2 sequences. As the training data, we use all complete H5N1 PB2 

Table 1  Amino acid composition, proposition, entropy, adjusted entropy and similarity coefficient 
(SC) at example positions of the PB2 protein sequence alignment

+ The number preceding the amino acid is the observed number of residues for that amino acid
# The number preceding the amino acid is the observed proportion of residues out of 2000 observed for that amino acid
& SC = Similarity Coefficient

*Adj. Entropy = Entropy/SC. See the methods section for a detailed explanation of adjusted entropy and a simple example

Attribute Position 1 (n = 2000) Position 2 (n = 2000)

Composition 1600+ Pro, 200 Phe and 200 Asn 1000 Tyr, 500 Phe and 500 Trp

Proportion (Pi) 0.8# Pro, 0.1 Phe and 0.1 Asn 0.5 Tyr, 0.25 Phe and 0.25 Trp

Entropy 0.639 1.040

SC& 0.625 3.605

Adjusted entropy* 1.022 0.288
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sequences (avian, swine and human) from 1996 to 2006, which gives a dataset of 554 
H5N1 PB2 sequences with the same length of 759 amino acids (AA) (strain names and 
accession numbers detailed in the data availability section). Similar to Chen and Shih 
[24], we exclude the 5 H5N1 avian influenza A sequences which were isolated from 
humans and use them as our validation dataset. Analysis of the 554 H5N1 PB2 sequences 
identified ten signatures using unadjusted entropy with a threshold of 0.33 where 9 were 
the same signatures found by Chen and Shih [24] and the remaining signature (674) 
was identified as a signature by Chen et al. [7] (Table 2). Using adjusted entropy and the 
same threshold (0.33), 22 signatures were found, of which 11 (BOLD) are new indicating 
improved sensitivity. Some of these new signatures could have been due to the threshold 
used by Chen and Shih [24]. Adjusting the threshold for adjusted entropy by using the 
SC of position 627 (SC = 2.2) gives 0.15 (0.33/2.2) as the new threshold. When applying 
this new threshold, only 7 positions were identified as signatures using adjusted entropy. 
Four of these positions were found by both unadjusted and adjusted entropy methods 
whereas three positions (BOLD) were not predicted by unadjusted entropy with the 
threshold of < 0.33 (Table 2).

Another comparison of the two methods is based on the five different avian H5N1 
influenza A viral strains isolated from humans. These are the same five strains excluded 
from our training dataset. Table 3 shows that the unadjusted method found one position 
(627) to be polymorphic, resulting in identifying two unique strains from the 5 for a false 
negative rate of 0.6 (3/5). However, Table 4 shows that the adjusted method identified 3 
unique strains giving a 0.4 (2/5) false negative rate—a third smaller than the unadjusted 
method. In addition, Table 4 shows that for the adjusted method, out of the 7 identified 
signatures, we observed 2 mutations for 3 of the strains and 1 mutation for the remain-
ing 2 strains whereas for unadjusted entropy, only 1 mutation was found out of the 10 
identified signatures meaning that adjusted entropy was more efficient than unadjusted 
entropy.

Method evaluation based on simulation

To study the performance of the different methods, we develop a simulation algo-
rithm to generate candidate sites based on small sets of real IAV sequences. The first 
part of the simulation process is to define “true positives” and “true negatives”. We 
start with real IAV sequence datasets of different divergent levels between different 
hosts. After alignment, we can directly define the “informative” starting point or “true 

Table 2  PB2 positions identified as host-specific signatures using unadjusted and adjusted entropy 
with two thresholds (0.33 and 0.15)

*Position 674 identified by Chen et al. [7]
+ Bold figures indicates new signature identified by adjusted entropy

Method Signatures

Unadjusted Entropy (< 0.33) 44 199 271 475 567 588 613 627 674* 702

Adjusted Entropy (< 0.33) 44 67+ 82 120 194 199 227 271 382 456 461 
463 475 526 567 588 613 627 674 684 697 
702

Adjusted Entropy (< 0.15) 44 199 227 382 475 627 697
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positive” to be PB2 Pos-627 which is experimentally known as a host-specific signa-
ture (Chen et al. [7]). Avian influenza viruses most commonly possess a glutamine (E) 
at position 627 of PB2, while human viruses contain a lysine (K) at this position. An 
E627K substitution in PB2 confers the ability of an avian virus to replicate efficiently 
at low temperatures in vitro [7]. To identify the “true negatives”, we use the following 
process.

(1)	 For each position in the alignment of training sequences, we find its dominant 
amino acid type and calculate its adjusted entropy within each host;

(2)	 Select a position with different dominant amino acid types for different hosts;
(3)	 For the selected positions from (2), consider those columns as “true negatives” if 

they are among those columns with the highest 20% of average adjusted entropy.

With these columns as the true positive and true negatives, we can simulate data 
to estimate the false positives and false negative rates using the following simulation 
process.

For false positive detection,

(1)	 For each obtained “true negative” we can simulate data from a multinomial distri-
bution using estimated amino acid proportions as the parameters. For example, for 
a column with 1600 Pro, 200 Phe and 200 Asn, we could obtain a multinomial dis-
tribution with parameters 0.8, 0.1 and 0.1 as the proportions of Pro, Phe and Asn, 
respectively.

(2)	 Generate 1000 new columns with a length of 1000 for each “true negative” and its 
corresponding multinomial distribution;

(3)	 Apply unadjusted and adjusted entropy methods to the generated columns and cal-
culate the false positive rate.

Similarly, we can generate new columns from the multinomial distribution for the true 
positive column and calculate the false negative rate.

After the well-known “swine flu” pandemic in 2009, the IAV sequences derived 
from human and swine have considerably larger similarity values compared to those 
from before 2009. So, for the highly divergent training dataset, we choose to use all 
human/swine H1N1 PB2 sequences from only 2008. For the median divergent train-
ing dataset, we choose to use a subset of human/swine H1N1 PB2 sequences from 
2000 to 2009 with the same sample size for each year. And for the less divergent 

Table 4  Signature positions and mutation patterns of PB2 identified by the adjusted method

+Number of mutations

Strain 44 199 227 382 475 627 697 Mutations+

AAK49374(A/Hong Kong/482/97(H5N1)) A S V I L E L 1

AAK49375(A/Hong Kong/483/1997(H5N1))] A A V V L K L 2

AAF74312(A/Hong Kong/483/1997(H5N1))] A A V V L K L 2

ACZ45427(A/Hong Kong/483/1997(H5N1))] A A V V L K L 2

CAB95862(A/Hong Kong/485/1997(H5N1))] A A V I L K L 1
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training dataset, we choose to use all human/swine H1N1 PB2 sequences found in US 
from 2000 to 2009 with sequences from 2009 making nearly half of the dataset.

Table 5 shows that the adjusted entropy method has a much better performance in 
both sensitivity and specificity. Note that for the less divergent training dataset, no 
signature can be identified using the unadjusted entropy method which explains the 
0% false positive rate and 100% false negative rate.

Chronological analysis of signatures and related application based on an H1N1 dataset

The chronological analysis of genomic signatures was first conducted by Hu et al. [3] in 
2014. The idea is to divide the IAV sequences isolated from different hosts (human, avian 
and swine) into different groups based on their collection years. According to Hu et al. 
[3], the number of avian-human host-specific signatures were relatively stable in the PB2 
proteins across all time periods. But unlike the avian-human signatures, the numbers of 
swine-human signatures were markedly reduced during 1978–2009 and 2010–2013. One 
possible explanation provided by Hu et al. [3] is that the sequence-level genetic differ-
ences in the PB2 proteins between swine and human IAV might have decreased during 
those two time periods. But since the chronological groups of the IAV were only roughly 
divided (into 6 periods: 1902–1918, 1919–1957, 1958–1968, 1969–1977, 1978–2009 and 
2010–2013), it is impossible to locate any exact change points. To better understand this 
phenomenon, we conduct a chronological analysis of swine-human host-specific sig-
natures based on H1N1 PB2 data from 2004 to 2014 with each year as an observation. 
Table 6 shows the swine-human host-specific signatures identified for each year based 
on both adjusted and unadjusted entropy. According to our results, year 2009 resulted in 
the sudden drop of numbers of identified signatures. The average numbers of signatures 
in 2004 to 2008 is 19.8 based on unadjusted entropy method and 29.8 based on adjusted 
entropy method, which is close to the chronological signature numbers identified by 
Hu et  al. [3] for the early three periods (1919–1957, 1958–1968 and 1969–1977 with 
numbers of signatures identified to be 20, 20 and 20, respectively). During the period 
from 2009 to 2014, the average numbers decreased to 0.17 using unadjusted entropy 
and 3.5 using adjusted entropy. We believe the sudden 2009 reduction resulted from the 
well-known H1N1 “swine flu” pandemic which cost an estimated 284,500 deaths [25]. 
We found from 2009 onwards, positions 54 and 315, then 66 and 731 are continually 
detected. The effects of these changes in viral proteins should be further investigated 
in vitro and in vivo.

Table 5  False positive and false negative rates for both unadjusted and adjusted entropy methods

Training dataset Unadjusted entropy Adjusted entropy

False positive rate False negative rate False positive rate False 
negative 
rate

Highly divergent 0.13 0.091 0.09 0

Median divergent 0 0.49 0 0

Less divergent 0 1 0 0.101
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To better understand the pandemic and the sudden drop in identified signatures, 
more mutation information is needed besides the number and position change in sig-
natures identification. Table 7 shows the mutations from 2008 to 2010 at three posi-
tions: 354, 344 which are host-changing related markers suggested by Belanov et al. 
[26] and 560 which is with a host-specific signature change identified by adjusted 
entropy. According to the mutation investigation, no dominant amino acid change 
happened at position 344 during 2008–2010 and the mutation at 354 is with an 
amino acid change from “human-like” to “swine-like” type. The mutations I354L and 
V344M were likely acquired in May 2009 and the change could be related to the adap-
tation of the swine-origin H1N1 virus to the human host [26]. In contrast, position 
560 identified as a host-specific signature by our adjusted entropy method is with an 
AA mutation from a “swine-like” to a “human-like”, which is more likely to be related 
to the H1N1 adaption to the human host. Note that position 560 is not detected by 
the unadjusted entropy method, which shows that the chronological analysis of sig-
natures using adjusted entropy can be helpful for influenza surveillance and vaccine 
strain selection.

Table 6  Swine-human signature positions identified using unadjusted (U) and adjusted (A) entropy 
for PB2 proteins during 2004–2014

+ U = unadjusted, A = adjusted entropy
++ n = number of signatures

Year Type+ Signatures n++

2004 U 9 44 81 91 105 114 199 354 355 395 399 411 447 475 490 491 547 567 627 702 20

2004 A 9 44 81 91 105 109 114 199 340 354 355 368 395 399 411 447 475 478 490 491 535 547 567 
591 627 645 667 702

28

2005 U 44 64 81 91 105 114 199 354 395 399 411 447 475 490 491 567 627 702 18

2005 A 9 44 64 65 91 109 114 199 340 354 368 395 399 411 475 478 490 491 535 547 567 591 627 
667 674 702

25

2006 U 9 44 81 91 114 199 354 355 395 399 411 447 475 490 491 547 567 627 702 19

2006 A 9 44 65 91 109 114 199 340 354 355 368 395 399 411 443 447 475 478 490 491 547 560 567 
591 627 645 702

27

2007 U 9 44 64 105 106 109 114 199 354 355 368 395 399 447 475 490 491 547 567 627 661 674 
702

23

2007 A 9 44 64 81 91 105 106 109 114 199 292 340 354 355 368 375 395 399 411 447 475 478 490 
491 535 547 560 567 591 627 645 661 667 674 702

35

2008 U 9 44 64 81 105 114 354 355 395 399 447 475 490 491 547 567 627 674 702 19

2008 A 9 44 64 65 73 81 105 109 114 127 199 292 340 354 355 395 399 411 447 451 456 475 478 
490 491 547 560 567 591 627 645 667 674 702

34

2009 U NA 0

2009 A 54 315 2

2010 U NA 0

2010 A 54 1

2011 U NA 0

2011 A 54 315 354 3

2012 U 344 1

2012 A 54 315 344 354 4

2013 U NA 0

2013 A 66 293 315 354 560 731 6

2014 U NA 0

2014 A 66 315 354 560 731 5
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Conclusions
We demonstrate that adjusted entropy provides a reliable and widely applicable host sig-
nature identification approach useful for IAV monitoring. Validation with a set of H5N1 
PB2 sequences from 1996 to 2006 results in adjusted entropy having a 40% false negative 
discovery rate compared to an 60% false negative rate using unadjusted entropy. Simu-
lations across different levels of sequence divergence show a false negative rate of no 
higher than 10% while unadjusted entropy ranged from 9 to 100%. In addition, under 
all levels of divergence adjusted entropy never had a false positive rate higher than 9%. 
Adjusted entropy also identifies important mutations in H1N1pdm PB2 previously iden-
tified in the literature that explain changes in divergence between 2008 and 2009 which 
unadjusted entropy could not identify. The results show that adjusted entropy can aid 
with monitoring essential IAV protein mutations which can provide useful information 
in virus monitoring and vaccine development.

Methods
Adjusted entropy

The idea of signature identification is to evaluate each position for its potential to carry 
specific functions/properties. Entropy relates to uncertainty or disorder of a system and 
can be useful for signature identification since it is a measure of how conserved amino 
acid residues are at a location. Claude Shannon [27] defined information entropy as

entropy = −

all i

(pi × ln(pi))

Table 7  PB2 amino acid mutations from 2008 to 2010 at three positions

Year Position Host Dominant AA type Identified as signature

Unadjusted entropy Adjusted 
entropy

08 354 Swine I Yes Yes

Human L

344 Swine V No No

Human V

560 Swine L No Yes

Human V

09 354 Swine I No No

Human I

344 Swine V No No

Human V

560 Swine V No No

Human V

10 354 Swine I No No

Human I

344 Swine V No No

Human V

560 Swine V No No

Human V
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where pi is the probability of observing the ith value of a random variable. Based on the 
composition of amino acids within each column of the IAV PB2 sequence alignment, 
entropy can be calculated to measure the uncertainty over the amino acid residues 
(i = 1–20) observed from each position of the aligned sequences with the same host. 
However, entropy for signature identification focuses only on the distribution of the pro-
portion of amino acid residue types and ignores the similarities among the amino acid 
residues. We propose an adjusted entropy measurement incorporating both entropy 
and similarity such that adjusted entropy = Shannon entropy/similarity. The unadjusted 
entropy or Shannon entropy quantifies the uncertainty measurement and similarity, 
which is quantified by a similarity coefficient and measures the level of conservative-
ness for the given position. Our proposed host-specific signature identification method 
is similar to the entropy method introduced by Chen et al. [7] except we use adjusted 
entropy.

As a simple example, a portion of the alignment is shown in Fig. 1, which illustrates the 
difference between the proposed new method and the existing host-specific signature 
identification method based on the Shannon or unadjusted entropy. Using unadjusted 
entropy, mutation positions with lower entropy, i.e. with stable amino acid composi-
tion, are selected as potential signatures, while the positions with a higher entropy, i.e. 
with unstable/random amino acid composition, are ruled out, e.g. the nonstable posi-
tions (Fig. 1). Among the selected stable mutation positions 4 through 8, we can identify 
the host-specific signatures, based on a comparison of the dominant amino acid types 
from different hosts. Position 8 is identified as a host-specific signature by both meth-
ods. However, the adjusted entropy method identifies an additional host-specific signa-
ture, position 4, with a relatively high entropy but conservative. This example shows how 
identification of host-specific signatures can be improved by adjusting entropy using 

Fig. 1  Host-specific signature identification method based on both adjusted and unadjusted (Shannon) 
entropy measurement
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similarity. More details will be introduced in the next section about the calculation and 
application of the similarity coefficient (SC).

Similarity coefficient (SC)

Adjusting entropy using a similarity coefficient magnifies the entropy of amino acids 
with non-conservative substitutions and reduces the entropy of those with conservative 
substitutions. With signature identification, the objective set of amino acids consists of n 
amino acid residues derived from a target position of the aligned IAV sequences where 
n denotes the number of sequences used for identification from a certain host. Assume 
these n amino acid residues have m different types (m = 1,2,…,20), where a “substitu-
tion” is defined as a pairwise replacement among the m amino acid types giving a total 
of m(m-1)/2 pairwise substitutions. For pairwise substitution, the conservative level may 
be quantified using a similarity score and the overall “similarity” among the m different 
types from the target position can be defined as the average of the m(m − 1)/2 possible 
pairs.

In this work, the log odds (Fig. 2) forms the basis of similarity coefficients (SC) among 
20 standard amino acids where P(O) denotes the observed proportion of occurrences of 
the given residue pair and P(E) denotes the expected proportion of occurrences of the 
given pair due to chance alone [18]. Specifically, the BLOSUM 62 matrix (BLOcks SUb-
stitution Matrix; Fig. 2) is used as a score matrix with log odds values computed for all 
pairs of residues using frequencies from blocks of related proteins where two sequences 
within blocks were clustered as the same sequence if at least 62% of their aligned posi-
tions were identical [18]. BLOSUM scores have proven to be useful for the alignment 
of protein sequences since they provide information about conservativeness of substitu-
tions among the 20 standard amino acids [28]. The BLOSUM matrix is a 20 × 20 scoring 
matrix providing negative scores (penalty) for non-conservative substitutions and posi-
tive scores (bonus) for conservative substitutions.

Fig. 2  The BLOSUM62 scoring matrix for amino acid substitution. A table value for a particular pair of amino 
acids is the log odds defined as 2log2(P(O)/P(E)) where P(O) is the observed probability of occurrence of the 
pair and P(E) is the expected probability of occurrence of the pair assuming independence [18]. Similarities 
between amino acid pairs are based on log odds as described in the text
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Based on the BLOSUM matrix, we obtain similarities between amino acid pairs 
by obtaining the difference between the observed and expected probabilities of each 
pair by applying the inverse function of the log-odds ratio. We define the similarity 
coefficient (SC) of a target position from the aligned IAV sequences as the inverse 
function (f(x) = 2x/2) of the average centered BLOSUM62 scores. The formula is as 
follows:

Here m denotes the number of amino acid residue types from the given position, bi,j 
denotes the log odds score in cell i,j of the BLOSUM62 matrix, indicating the substitu-
tion probability of amino acid type i and j and O(bk) and E(bk) denote the observed and 
expected average BLOSUM62 score for amino acid type k, respectively. O(bk) is calcu-
lated as the average log odds score of the observed AA (other than type k) paired with 
amino acid type k and E(bk)  is calculated as the average log odds score of all possible 19 
AA (other than type k) paired with amino acid type k.

As an example of calculating the similarity coefficient (SC), two amino acid com-
positions {Pro, Phe, Asn} and {Tyr, Trp, Phe} are assumed for the two given positions 
(i.e. two columns from the aligned amino acid sequences). SC is calculated for each 
position as follows:

With this definition of SC, the positions with only 1 type of amino acid residue 
can be ignored since the Shannon entropy of such positions is 0 regardless of adjust-
ment. Alternatively, when the positions contain all 20 standard amino acids, the SC 
will be 1 representing no adjustment to entropy, which is reasonable since the level 
of conservativeness is treated as “average”. In other cases, when more conservative 
substitutions are observed, SC will be greater than 1 representing a higher similarity 
level while if more non-conservative substitutions are observed, SC will be less than 
1 representing a lower similarity level. Based on the BLOSUM62 matrix, most of the 
SCs are within a range from 0.1 to 10.

SC = 2
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Host‑specific signature identification

The following is the process we use to identify signatures.

Identify the training dataset

Chen et al. [7] suggested using all sequences available as the training dataset for signa-
ture identification while in other studies (e.g. [3]), the training dataset can be selected 
based on different research goals. In this work, we illustrate our method with a simu-
lated dataset and a partial real dataset and we also conduct analyses based on time and 
location.

Align sequences

In this step, all sequences from different hosts are aligned altogether. An option for us 
to balance the alignment based on different number of sequences of the 2 hosts is to use 
oversampling or undersampling which was introduced by Hu et al. [3]. We use MUSCLE 
[29] as the alignment algorithm which is used by both Chen et al. [7] and Hu et al. [3] in 
their signature identification methods.

Calculate entropy values for each position

Based on the composition of amino acid types within each column of the aligned IAV 
dataset, Shannon entropy is used to measure the uncertainty of the amino acid resi-
dues for each position of the aligned sequences within the same host, here either avian, 
swine or human. Then adjusted entropy is obtained by dividing entropy by the similarity 
coefficient:

where each pi denotes the proportion of the ith amino acid residue type. A larger simi-
larity coefficient will reduce entropy and uncertainty.

Identify positions as potential signatures

Positions with entropy values below a threshold are identified as stable and considered 
potential signatures. Chen et al. [7] established a threshold by calculating the entropy of 
a certain position experimentlly known as a host-specific signature, specifically PB2-627, 
and used a threshold of 0.4 while Chen and Shih [24] suggested 0.33 based on a larger 
training dataset. We provide two different threshold values, one to maintain the same 
threshold and a second based on adjusted entropy of PB2-627.

For the selected positions, compare the dominant types of amino acid residues 

among different hosts to see if they can be identified as host‑specific signatures

The positions with entropy values lower than the threshold with different dominant 
types of amino acid residues in different hosts are identified as signatures. These signa-
tures may indicate that mutations at these locations related to a potential interspecies 
transmission.

As an illustration of how the SC and adjusted entropy may affect the signature identi-
fication, consider the two amino acid compositions {Pro, Phe, Asn} and {Tyr, Trp, Phe} 

adjusted entropy = −
∑

i=1,...,20

(pi × ln(pi))/SC
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considered in the above example. Further assume that each amino acid composition has 
2000 total residues. Table 1 shows the composition and proportions for each position 
with the frequency or proportion of residues preceding each amino acid and Shannon 
entropy, SC and adjusted entropy computed as described above. Position 1 has a lower 
entropy value than position 2 but a much higher adjusted entropy since the 3 amino acid 
types for position 1 are quite “dissimilar” compared to the similarity among the 3 amino 
acid types of position 2. Based on adjusted entropy, the second position is considered as 
a preferred candidate host-specific signature while the unadjusted entropy method indi-
cates the first position is preferred.
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