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Abstract 

Background:  To obtain phase-contrast X-ray images, single-grid imaging systems are 
effective, but Moire artifacts remain a significant issue. The solution for removing Moire 
artifacts from an image is grid rotation, which can distinguish between these artifacts 
and sample information within the Fourier space. However, the mechanical move‑
ment of grid rotation is slower than the real-time change in Moire artifacts. Thus, Moire 
artifacts generated during real-time imaging cannot be removed using grid rotation. 
To overcome this problem, we propose an effective method to obtain phase-contrast 
X-ray images using instantaneous frequency and noise filtering.

Result:  The proposed phase-contrast X-ray image using instantaneous frequency and 
noise filtering effectively suppressed noise with Moire patterns. The proposed method 
also preserved the clear edge of the inner and outer boundaries and internal ana‑
tomical information from the biological sample, outperforming conventional Fourier 
analysis-based methods, including absorption, scattering, and phase-contrast X-ray 
images. In particular, when comparing the phase information for the proposed method 
with the x-axis gradient image from the absorption image, the proposed method 
correctly distinguished two different types of soft tissue and the detailed information, 
while the latter method did not.

Conclusion:  This study successfully achieved a significant improvement in image 
quality for phase-contrast X-ray images using instantaneous frequency and noise filter‑
ing. This study can provide a foundation for real-time bio-imaging research using three-
dimensional computed tomography.

Keywords:  Phase-contrast X-ray image, Instantaneous frequency, Noise filtering, 
Fourier analysis, Moire artifact

Background
X-rays have been employed for numerous applications in a wide range of fields, includ-
ing clinical diagnoses, product inspection, material analysis, and airport security. How-
ever, traditional absorption images produced using conventional X-ray techniques only 
reveal the internal structure of soft tissue (low-Z material) due to the weak absorption 
contrast caused by the thickness and absorption coefficients of the samples [1, 2]. In 
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contrast, compared to absorption images, scattering and phase-contrast X-ray images 
can reveal a greater range of internal information for soft tissue based on phase changes. 
Particularly, scattering images provide scattered signals using micro-structures [3–6], 
and phase-contrast X-ray images can clearly reveal the phase contrast of the boundaries 
of internal structures using refractive indices [7–11].

Phase-contrast X-ray images have been employed to reveal internal information for 
medical and biological samples in various ways. For example, they can be used to observe 
tumor masses due to the relatively slow variation in the integrated phase shift [12]. How-
ever, phase-contrast X-ray images obtained using computed tomography (CT) can accu-
rately reveal the structures of different types of soft tissue in coronary artery autopsy 
samples to understand heart disease and visualize microscopic structures, such as lipid-
rich plaques, individual adipose cells, ensembles of foam cells, and thin fibrous caps [13]. 
Similar to confocal microscopy, CT has also been used to observe the muscular struc-
tures of unstained whole zebrafish at a high sub-cellular resolution [14]. Although the 
scattered signals produced by microbubble contrast agents negatively affect the internal 
information obtained from CT images, CT has been employed to accurately visualize 
the 3D architecture of murine cardiovascular vessels [15], while dark-field scattering 
CT images have also successfully detected cracks inside teeth to diagnose the causes of 
tooth pain [16]. In addition, CT image patterns can be used to examine the condition of 
thin cartilage attached to the bones of patients and provide important clues for diagnos-
ing inflammation and pain associated with cartilage [17].

Although there are various techniques for obtaining phase-contrast X-ray images, 
grating-based imaging has recently emerged as a promising method due to its ability to 
simultaneously generate absorption, scattering, and differential phase-contrast X-ray 
images. Particularly, this technique can generate scattering and phase-contrast X-ray 
images by converting the incoherence of conventional X-ray sources into coherence 
using a grating process [18–21]. However, excessive time requirements and mechanical 
errors caused by grid motion during the phase-shift process [22, 23] have limited the 
practical application of grating-based imaging for real-time bio-imaging. Additionally, 
the alignment of the grids used in the experimental setup for this technique must be 
precise to achieve the desired imaging conditions [24, 25], and this tedious alignment 
process has restricted the widespread adoption of this technique.

To overcome these problems, Wen et al. proposed a single-grid phase-contrast X-ray 
imaging system to obtain absorption, scattering, and phase-contrast X-ray images 
using Fourier analysis [26, 27]. However, the presence of Moire artifacts in single-grid 
phase-contrast X-ray images, which are caused by the grid, remains a serious limitation. 
To remove these artifacts, a previous study [28] proposed the use of grid rotation on 
a grid plane to distinguish the spectral peaks between the sample and the artifacts in 
the Fourier domain. Consequently, this enables the extraction of the artifacts from the 
phase-contrast X-ray image. However, noise filtering through software processing and 
the mechanical movement of grid rotation affect real-time measurement. Due to current 
levels of computing power, noise filtering can be performed immediately after or during 
image acquisition. Furthermore, previous studies have proposed the use of non-itera-
tive integration and sparse domain regularized stripe decomposition without mechani-
cal movement for noise filtering to remove the streak and ring artifacts during the CT 
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process [29, 30]. However, the response of grid rotation to the noise (e.g., Moire arti-
facts) generated during image acquisition is slow because the mechanical movement of 
grid rotation is generally slower than the image acquisition speed, and grid rotation can-
not modify the image after it is acquired. Therefore, a noise-filtering method that can be 
employed for real-time measurements is required.

To overcome the mechanical limitations of grid rotation, in this study, we proposed 
the acquisition of phase-contrast X-ray images using instantaneous frequency and noise 
filtering. During the acquisition process, an original phase-contrast X-ray image con-
taining sample information with noise was acquired using instantaneous frequency. Sub-
sequently, noise filtering was employed to remove the noise in the image. Instantaneous 
frequency and noise filtering thus enabled the acquisition of a filtered phase-contrast 
X-ray image from a single raw image obtained from a detector without using grid rota-
tion, which means that the method proposed in this study has the potential to be used 
in real-time bio-imaging. In addition, the proposed noise-filtering process exhibited 
outstanding performance in terms of simultaneously removing noise while preserving 
detailed information from inside the sample tissue. Compared to absorption x-axis gra-
dient images, the images obtained using the proposed method were able to clearly dis-
tinguish between different types of tissue and provide detailed information from inside 
the bone and soft tissue of the sample.

Result
Qualitative image analysis using bio‑samples

Figure 1 presents the images acquired for the head of the fish used as the bio-sample. 
Figure 1a, c, e represents the absorption, scattering, and phase-contrast X-ray images 
of the bio-sample acquired using Fourier analysis, and Fig.  1b, d, f represents their 
corresponding x-axis gradient images, respectively. Figure  1g, h shows the original 
phase-contrast X-ray image of the bio-sample acquired using instantaneous fre-
quency and its corresponding filtered image obtained using the proposed method, 

Fig. 1  a–h Eight subset images of the head of the bio-sample. FA: Fourier analysis; IF: instantaneous 
frequency; Abs: absorption image; Scatt: scattering image; PCXI: phase-contrast X-ray image; dx: x-axis 
gradient image; Orig: original
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respectively. The information of the bone and soft tissues of the bio-sample, includ-
ing the gill, fin, and vertebral tissues (red, orange, and blue arrows, respectively) are 
presented in Fig. 1a. Figure 1c, e shows an image of the soft tissue (indicated by the 
yellow arrow) with the noise pattern. The tissue boundary in Fig. 1b is less clear com-
pared to that in Fig. 1a. The information from the bio-sample is more ambiguous in 
Fig.  1d, f than in Fig.  1b, while Fig.  1h has the best image quality. It makes a clear 
distinction between the soft tissue (yellow arrow) and the surrounding tissue under 
operating conditions of 22 kVp, and detailed information on the gill, fin, and verte-
bral tissue (red, orange, and blue arrows, respectively) can be observed. Figure 1g also 
shows the internal information from the bio-sample; however, noise is also present in 
the image.

Figure  2 presents images for the tail of the bio-sample. Figure  2a, c, e displays 
the absorption, scattering, and phase-contrast X-ray images acquired using Fourier 
analysis, while Fig.  2b, d, f represents their corresponding x-axis gradient images. 
Figure 2g, h shows the original phase-contrast X-ray image obtained using instanta-
neous frequency and the image obtained using the proposed method, respectively. 
Figure 2a presents the bone and fin structures (red, orange, and yellow arrows) of the 
bio-sample. Figure 2c, e shows the bone and outer boundary between the fish air, but 
severe noise can be observed. The image of the boundary in Fig.  2b is clearer than 
that in Fig.  2a, while the internal structure visible in Fig.  2d, f is more ambiguous 
than Fig. 2b. Overall, Fig. 2h provides the clearest information on the various internal 
structures, with the fins and vertebral tissue (red, orange, and yellow arrows) more 
clearly expressed than those in Figs. 2a–f. Figure 2g presents the internal information 
from the bio-sample with periodic noise.

Fig. 2  a–h Eight subset images of the tail of the bio-sample. FA: Fourier analysis; IF: instantaneous frequency; 
Abs: absorption image; Scatt: scattering image; PCXI: phase-contrast X-ray image; dx: x-axis gradient image; 
Orig: original; RT: rectangle
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Comparison of absorption gradient and proposed phase‑contrast images using 

instantaneous frequency

To verify the performance of the proposed imaging method, the absorption x-axis gra-
dient image in Fig. 2b was selected as a reference image and compared to the proposed 
filtered phase-contrast X-ray image in Fig. 2h because this image exhibited the best qual-
ity of those acquired using Fourier analysis. Figure 3a, c presents a magnification of the 
blue boxes RT1 and RT2, respectively; Figs. 2b and 3b, d present a magnification of the 
blue boxes RT4 and RT5, respectively, in Fig. 2h. Figure 3a, b shows the elongated fine 
patterns of the dorsal fin (yellow arrow). The boundary of the dense fin structures in 
Fig. 3b is clearer than that in Fig. 3a. In addition, a sharp change from white to black in 
each fin structure can be observed in Fig. 3a. Furthermore, compared to Fig. 3c, more 
delicate structures of the badge fin (green arrow) are visible in Fig. 3d, and the internal 
information on the overlapping fin structures (orange arrow) is more clearly expressed. 
Additionally, compared to Fig.  3a, the vertebrae of the fish are more clearly visible in 
Fig. 3b (blue arrow).

Noise removal using an adaptive notch and multi‑resolution structurally varying bitonic 

filters

Figure 4 presents the results of the noise filtering conducted in two steps: (1) the use 
of an adaptive Gaussian notch filter and (2) the use of a multi-resolution structur-
ally varying bitonic filter [31]. The multi-resolution structurally varying bitonic filter 
was selected from among three types of bitonic filter (Matlab code: mvbitonic2 with 
a parameter value of 7). To identify the effect of the adaptive Gaussian notch filter 
(Step 1), a filtered image was obtained (Fig.  5c). Compared to the image in Fig.  5a, 
the periodic noise in the filtered image was significantly lower. The spectral image 
of Fig. 5a is presented as Fig. 5b, while the spectral image of Fig. 5c is presented as 

Fig. 3  Comparison of the areas indicated by the blue boxes in Fig. 2 (RT1, RT2, RT4, and RT5: dorsal and 
badge fin) for the a, c absorption x-axis gradient image and b, d phase-contrast X-ray image obtained using 
instantaneous frequency. IF: instantaneous frequency; Abs: absorption image; PCXI: phase-contrast X-ray 
image; dx: x-axis gradient image; RT: rectangle
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Fig. 5d. Using these spectral images, we evaluated the effect of the notch filter. Com-
pared with Fig. 5b, the vertical and horizontal outer components of the two crosses in 
Fig. 5d were significantly suppressed. In signal processing, a band stop filter is used 
to block the spatial frequency range of unwanted noise. In this context, a notch filter 
has a narrow spatial frequency range, which is also referred to as the notch frequency 
range [32]. To identify the effect of the multi-resolution structurally varying bitonic 
filter (Step 2), we conducted noise filtering with a parameter value of 7. The filter con-
verted the image in Fig. 8a into the image in the bottom row, fourth column in Fig. 8b.

Discussion
The proposed method introduced in this study produces excellent image quality. In 
particular, the distinction between the target soft tissue and surrounding tissue is 
clear (see "Soft tissue segmentation ability of the proposed method" section). The 
proposed images present fine structures and a clear distinction between bone and 
soft tissue in the fin compared to the absorption x-axis gradient images (see "Differ-
ence between absorption x-axis gradient and phase-contrast X-ray images" section). 
During noise filtering, the proposed images are able to preserve detailed information 

Fig. 4  Images showing the noise-filtering process: adaptive Gaussian notch (Step 1: a to b) and 
multi-resolution structurally varying bitonic filter (Step 2: b to c). RT: rectangle

Fig. 5  Image filtering of the areas indicated by the blue boxes in Fig. 4a, c (i.e., RT1 and 3) using an adaptive 
Gaussian notch filter (Step 1: a to c) and the corresponding spectral images. b, d The spectral images of a and 
c, respectively. RT: rectangle
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while removing noise (see "Two-step noise filtering in the phase-contrast X-ray 
image" section).

Relation between noise, X‑ray source energy, and noise filtering

Figures 1 and 2 summarize the relationship between energy and noise in absorption, 
scattering, and phase-contrast X-ray images. It is generally well known that low-
energy images show better image quality than high-energy images. For example, Gro-
mann et al. [33] reported that phase-contrast X-ray images and scattering low-energy 
(30 kVp) images reveal clearer and more detailed information on the soft tissue in 
4-cm-thick breast samples than do high-energy images (40 kVp). However, some 
studies have reported contrasting findings. A previous study [34] reported that the 
internal information from a sample is not visible in low-energy images, which can 
be attributed to the fact that the scattering signals caused by the micro-structures 
in low-energy images are more prominent than that in high-energy images. Conse-
quently, the scattering signals in phase-contrast X-ray images at a low energy result 
in noise, which can lead to the loss of detailed information from a sample. In addi-
tion, compared to high-energy (90 and 70 kVp) images, the scattering signals for 
low-energy (50 kVp) images obscure details of the internal structure of a sample. In 
this study, we avoided the problems associated with scattering signals in low-energy 
images using noise filtering.

Soft tissue segmentation ability of the proposed method

Compared to the yellow arrows in Fig. 1a, c, e, the yellow arrow in Fig. 1h at 22 kVp 
indicates a clear distinction between two different types of soft tissue. This demon-
strates that the proposed images have the potential for use in medical applications 
because they have the segmentation ability required to distinguish the target tissue, 
such as cancer cells, biopsied lesions, fat tissue, collagen strands, glandular tissue, or 
macro-or micro-calcification, from the surrounding soft tissue. Previous studies have 
reported that this method can detect tissues of interest. Zhao et al. [35] demonstrated 
that palpable tumors or biopsied lesions that cannot be detected using mammograms 
can be detected using phase-contrast X-ray images (60 keV). In their study, the seg-
mentation of an isolated tumor from the surrounding tissue (e.g., skin, lobules, and 
lactiferous ducts) was possible using phase-contrast X-ray images, with the 3D vol-
ume of the tumor estimated to be approximately 2.7 cm3. Diemoz et al. [36] acquired 
a phase-contrast X-ray image (60 keV) that revealed the various sub-tissues (fat tis-
sue, collagen strands, glandular tissue, and macro-calcification) in a breast cancer 
tissue sample from a patient. Baran et al. [37] also reported propagation-based phase-
contrast mammographic tomography data for cancer in a breast tissue sample from a 
patient. The data provided the detailed structures for cancer sub-tissues (e.g., fibrous 
stromal septa, blood vessels, and benign cysts).

Difference between absorption x‑axis gradient and phase‑contrast X‑ray images

Figures  3, 6, and 7 illustrate the difference between absorption x-axis gradient and 
phase-contrast X-ray images. The details from the images in Fig.  3 were utilized to 
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highlight the features of the proposed and absorption x-axis gradient images. The 
proposed image provided a clear distinction of the outer boundary of the bio-sample 
in contact with air, a clear view of the inner boundaries of the internal structures, and 
good preservation of the fine internal structures of the fish. In contrast, the absorp-
tion x-axis gradient image included a black-to-white change in all structures and a 
soft and smooth representation of the boundaries of the structures.

Several previous studies have compared absorption x-axis gradient and phase-contrast 
X-ray images using bio-samples. For example, Krejci et al. [38] obtained a clear image of 
the internal structure of a mouse leg and the dry bone of the head of a hornet, while Du 

Fig. 6  Comparison of the magnified areas indicated by the blue boxes in Fig. 2 (RT3 and 6: caudal fin) for a, c 
absorption x-axis gradient and b, d phase-contrast X-ray images. Abs: absorption image; PCXI: phase-contrast 
X-ray image; IF: instantaneous frequency; dx: x-axis gradient image; RT: rectangle

Fig. 7  Pixel profiles along the yellow line for the absorption x-axis gradient image in Fig. 6 (c) and the 
filtered phase-contrast X-ray image in Fig. 6 (d). Abs: absorption image; PCXI: phase-contrast X-ray image; IF: 
instantaneous frequency; dx: x-axis gradient image; S: soft tissue; B: bone. The solid red line at 1 is constant 
and the red dotted line at 2 is a quadratic curve
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et al. [39] identified the vein tissues in a leaf, which were similar to the vasculature, and 
Sato et al. [40] extracted the cartilage from the bone of a chicken; however, the method 
could not identify the inner structure of a tomato, which contains water. Pfeiffer et al. 
[41] also revealed the delicate structure of the wing of a bird. Generally, differentiating 
an absorption x-axis gradient image increases the noise in the image. To prevent this, 
Hahn et al. [42] employed a Gaussian-derivative filter with a Gaussian width of 1/2π and 
found that it mitigated the loss of sample information and improved the image quality. 
However, they did not accurately compare absorption x-axis gradient and phase-con-
trast X-ray images. Based on the findings of these studies, we selected a suitable noise fil-
ter for our proposed method. The parameters of the noise-filtering technique employed 
in this study are presented in "Performance evaluation of multi-resolution structurally 
varying bitonic filter" section.

Figure 6a, c shows the absorption x-axis gradient image and Fig. 6b, d shows the pro-
posed phase-contrast X-ray image of the bone and soft tissue in the caudal fin of the bio-
sample, and the differences in the pixel profiles of the proposed phase-contrast X-ray 
and absorption x-axis gradient images are clearly presented in Fig. 7. Figure 6a, b pre-
sents the 6 × magnified images of the areas in the blue boxes in Fig. 2b, h, while Fig. 6 
c, d shows the 20 × magnified area indicated by the yellow line in Fig. 6a, b. The image 

Fig. 8  Fifteen filtered images of the areas indicated by the blue boxes in Fig. 4b, c using three bitonic 
filters with different parameter values (Step 2: Fig. 4 RT2 to RT4). Top row: simple bitonic filter; middle row: 
structurally varying bitonic filter; and bottom row: multi-resolution structurally varying bitonic filter. RT, 
rectangle; Para, parameter
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in Fig. 6d has a clearer division of the boundaries (red triangles) than does the image 
in Fig. 6 (c) (blue triangles), which suffers from blurred boundaries and a change from 
white to black for the bone structure.

Figure  7 presents the pixel profiles (row: 1550, col: 700–800) indicated by the yel-
low lines in Figs.  6 (c) and (d) for the absorption x-axis gradient image and the pro-
posed phase-contrast X-ray image, respectively. The absorption x-axis gradient image 
was characterized by a smooth curve and a periodic signal with very large differences 
between the local maxima and minima (indicated by the blue triangles). In contrast, the 
pixel profile of the proposed image was characterized by more fine-scale changes in the 
profile (black triangles) and two general patterns: the first type was generally constant 
(solid red line) and the other was a quadratic curve (red dotted line). In addition, points 
that separated these two patterns were observed (red triangles).

Based on these pixel profiles, the disadvantages of absorption x-axis gradient images 
are readily apparent. First, the minima and maxima (blue triangles) hindered the dis-
tinction between bone and soft tissue. Secondly, the abrupt change in the pixel values 
between two points could easily be misunderstood as the boundary between bone and 
soft tissue. In contrast, the proposed image clearly presented a constant pixel profile 
(solid red line) that was representative of soft tissue, whereas the quadratic curve (red 
dotted line) corresponded to bone. Thus, the points between these two patterns (red 
triangles) corresponded to the boundary between bone and soft tissue. The proposed 
image also provided detailed information (black triangles) on the soft tissue (S) and bone 
(B).

Two‑step noise filtering in the phase‑contrast X‑ray image

Previous studies [43, 44] have provided detailed internal information for a sample 
through pixel profile analysis. However, these studies did not report the removal of 
noise from the images. For example, Kneip et al. [45] obtained pixel profiles of a phase-
contrast X-ray image and absorption image of the leg of a damselfly. They found that 
the profile of the phase-contrast X-ray image provided more detailed information, but it 
contained noise and artifacts. Another study [42] reported that the distinction between 
noise and the detailed structure of tissue in absorption and phase-contrast X-ray images 
is ambiguous. To address these problems, we employed a two-step noise-filtering pro-
cess (Steps 1 and 2) to simultaneously preserve the detailed internal information and 
reduce noise. This would enable our proposed method to be more suitable for use in 
medical diagnosis than these past studies.

To remove the residual noise after noise filtering (Step 1), we propose the use of 
a multi-resolution structurally varying bitonic filter. Figure  5c shows that the filter 
removed most of the periodic noise from the image, but salt-and-pepper noise could still 
be observed. Generally, median and average filters are effectively used to filter this type 
of noise. However, the use of these filters can result in the severe loss of detailed informa-
tion from the sample. Developing a solution that can satisfy both noise removal and the 
preservation of detailed information has remained a challenge. To overcome this prob-
lem, we proposed a second step to satisfy the two requirements that used the param-
eter value of three bitonic filters (simple, structurally varying, and multi-resolution 
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structurally varying filters) to vary the quality of the filtered images. In this way, the 
optimal trade-off between retaining detailed information and removing noise could be 
determined.

Figure 8 presents the images produced with a change in the parameter value (1, 3, 5, 
7, and 9) using the three filters. The diameter of the mask was used as the parameter 
value in the simple bitonic filter, while the size (2 × parameter + 1) of the region contain-
ing various masks was used as the parameter value for the structurally varying bitonic 
and multi-resolution structurally varying bitonic filters. The mask was the coverage area 
of the three filters. Figure  8b shows that the three bitonic filters removed noise from 
the image. However, an increase in the blurring effect with a change in the parameter 
value (≥ 5) was observed in the images filtered using the simple bitonic filter. In contrast, 
the structurally varying bitonic and multi-resolution structurally varying bitonic filters 
provided more detailed and clear information for a parameter value ≥ 5. In particular, 
the images obtained using the structurally varying bitonic filter exhibited detailed infor-
mation, but this information could not be clearly observed because it was obscured by 
unremoved residual noise. In contrast, the multi-resolution structurally varying bitonic 
filter removed most of the residual noise from the images, and the detailed information 
was generally well preserved. In addition, the analysis of the six images obtained using 
the multi-resolution structurally varying bitonic and structurally varying bitonic filters 
at a parameter value of ≥ 5 in Fig. 8b revealed that the multi-resolution structurally vary-
ing bitonic filter was more effective for the reduction of residual noise. Based on these 
results, we selected a parameter value of 7 for the multi-resolution structurally varying 
bitonic filter as the optimal conditions.

Performance evaluation of multi‑resolution structurally varying bitonic filter

To quantitatively evaluate the noise removal performance and the preservation of 
detailed information using the multi-resolution structurally varying bitonic filter, the 
peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity 
index map (SSIM) values were calculated for the reference and comparison images over 

Table 1  Peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index 
map (SSIM) values for the reference and comparison images

Reference image: bottom row, fifth column of RT4. Comparison image: the 14 images of RT4 excluding the reference image 
and the one image of RT2 in Fig. 8. RT: rectangle

Image quality Reference: RT4 (5X) Bottom row, 5st column image

Comparison: RT4 (5X) RT2 (5X)

1st column image 2st 3st 4st 5st

PSNR value (dB) Top row 12.42 19.89 20.1 17.52 16.15 10.04

Middle row 12.95 15.25 17.8 20.42 22.74

Bottom row 14.71 18.91 22.7 27.54 1

MSE value Top row 0.011 0.0047 0.0046 0.0062 0.0072 0.015

Middle row 0.01 0.008 0.006 0.0044 0.0034

Bottom row 0.0085 0.0052 0.0034 0.0019 1

SSIM value Top row 0.86 0.95 0.96 0.92 0.89 0.79

Middle row 0.87 0.91 0.94 0.96 0.98

Bottom row 0.91 0.96 0.98 0.99 1
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pixel profile for the 15 images in Fig. 8b. The image in the bottom row and 5th column 
(multi-resolution structurally varying bitonic filter with a parameter value of 9) in Fig. 8b 
was used as the reference image to calculate the three values because it was generally 
clearer than the other images. The PSNR, MSE, and SSIM values are listed in Table 1. 
The optimal conditions for all three metrics were obtained for the image obtained under 
the selected conditions of the proposed filter (multi-resolution structurally varying 
bitonic filter with a parameter value of 7). This indicates that the selected conditions for 
the proposed filter led to remarkable noise removal performance.

A comparison of the pixel profiles in Fig.  9 revealed that the noise in the compari-
son image (simple bitonic filter with a parameter value of 9) was mostly removed, but 
the detailed information from the sample was severely damaged. In contrast, the pixel 
profile for the multi-resolution structurally varying bitonic filter with a parameter value 
of 7 showed that the noise was strongly suppressed, while the detailed information was 
well preserved. These results verify the strong performance of the proposed filter for 

Fig. 9  Pixel profiles for the yellow line in the images in the a top row, fifth column and b bottom row, fourth 
column in Fig. 8b 

Fig. 10  Images of the proposed filter and representative unsupervised deep-learning-based denoising 
methods Noise2Self, Noise2Void, Noiser2Noise, and NoisyAsClean
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the simultaneous preservation of detailed information and noise removal (Best PSNR: 
27.54 dB, MSE: 0.0019, and SSIM: 0.99).

In Fig. 10, we compared the images from the proposed filter with those generated 
by recent deep learning-based denoising methods. Considering that it is generally dif-
ficult to obtain a high-quality, pristine reference image for the proposed grid-based 
phase-contrast X-ray images, the representative unsupervised learning-based denois-
ing methods Noise2Self [46], Noise2Void [47], Noiser2Noise [48], and NoisyAsClean 
[49] were employed for the performance comparison. Figure 10 presents the images. 
The proposed filter provided clearer and more detailed inner and outer structures of 
the biological sample than did the deep learning-based denoising methods. We have 
not presented the results for the removal of the Moire artifacts using the adaptive 
Gaussian notch filter because Moire artifacts were not generated in our results. How-
ever, Varghese et al. [50] clearly demonstrate the removal of Moire artifacts using an 
adaptive Gaussian notch filter (Fig. 7 of the cited paper). We successfully removed the 
periodic noise in a similar manner to the Moire artifacts. The residual noise was also 
significantly suppressed by the bitonic filters. Thus, we demonstrated excellent noise 
removal while maintaining the internal information of the biological sample. For ref-
erence, we used the CT image dataset in related to the deep learning models [62].

Comparison of TV‑L1 denoising

Figure  11 presents filtered images produced by adjusting the parameters for the 
TV-L1 denoising filter [51]. The image produced by TV-L1 denoising filter with a 
lambda of 1.0 (Fig.  11b) was most comparable with that produced by the proposed 
filter (Fig.  11d). However, Fig.  11b shows Moire artifacts in the diagonal direc-
tion, while Fig.  11d does not. In addition, Fig. 11b vaguely represents the vertebrae 
(blue arrow) and comb fins (green arrow), while Fig. 11d presents them clearly and 

Fig. 11  Images produced by the TV-L1 denoising and proposed filters. The top row presents the image 
before filtering: a–c images from the TV-L1 denoising filter with a lambda of 0.1, 1.0, and 2.0, respectively, and 
100 iterations and d image from the proposed filter
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in detail. Therefore, the proposed filter had a stronger filtering ability than did the 
TV-L1 denoising filter.

Conclusion
In this study, we proposed a method for the production of clear, high-resolution phase-
contrast X-ray images using instantaneous frequency and noise filtering. Conventional 
absorption, scattering, and phase-contrast X-ray images produced using Fourier analysis 
suffer from ambiguous internal structures and noise patterns. Compared with conven-
tional images, the proposed method generates images that show a clear division between 
the inner and outer boundaries and detailed internal structures. Moreover, a pixel pro-
file comparison of absorption x-axis gradient and the proposed images revealed that the 
proposed image offers the clear and precise distinction between bone and soft tissue 
details and reveals detailed structures. Thus, the proposed imaging method holds prom-
ise for use in real-time bio-imaging using 3D CT.

Method and experimental setup
Data acquisition

The components of the equipment used to obtain the raw images are presented in 
Fig.  12. The setup included an X-ray source that was operated at 22 kVp and 20  mA 
with an exposure time of 630  ms and a focal spot size of 100  μm, a grid with a pitch 
size of 0.118 mm (215 dpi), and a detector with a pixel size of 7 µm and dimensions of 
3840 × 3072. The source-to-sample distance was 500  mm, the source-to-grid distance 
was 700 mm, and the source-to-detector distance was 1448 mm. A yellow corvina (Lar-
imichthys polyactis) with a maximum thickness of 2  cm was used as the bio-sample. 
Subset images of the head and tail of the bio-sample were obtained in this study.

Fig. 12  Setup of the equipment used to obtain the raw images. The X-ray tube was operated at 22 kVp 
and 20 mA, with an exposure time of 630 ms. The focal spot size of the equipment was 100 μm and the 
grid pitch was 0.118 mm (215 dpi). The CMOS flat-panel detector had a pixel size of 7 µm and dimensions 
of 3840 × 3072. The source-to-object distance (SOD), source-to-grid distance (SGD), and source-to-detector 
distance (SDD) were 500, 700, and 1448 mm, respectively
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Phase‑contrast X‑ray image by instantaneous frequency and noise filtering

Figure 13 shows the acquisition process for a phase-contrast X-ray image using instanta-
neous frequency using One row(x) in the raw image. This line was first transformed into 
a conjugate line Hilbert transform (HT), meaning that One row(x) becomes HT (One 
row(x)). Generally, an HT converts a cos signal into a sin signal or a sin signal into a cos 

Fig. 13  Acquisition of a phase-contrast X-ray image using instantaneous frequency and noise filtering. PCXI: 
phase-contrast X-ray image

Fig. 14  Description of the unwrapping process. ± 2π is added to the phase value at the position of the 
difference Δφ until the difference is less than π

Fig. 15  Pseudocode of the unwrapping process. ± 2π was added to the phase value at the position of the 
difference Δφ until the difference was less than π. φ (i) is the phase value at index i. φ (i + 1:N) are the phase 
values from indexes i + 1 to N
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signal. Subsequently, the line and conjugate line were combined to form complex line 
exp φ(x) (Eq. 1). The complex line was guided to a phase line φ(x), after which the phase 
line was unwrapped (unwrapp φ(x) in Eq. 2). The unwrapping process in Eq. (2) was con-
ducted using a function in Matlab™ and is described in Fig. 13. During the unwrapping 
process, if the discontinuous difference between phase values was larger than π, ± 2π 
was added to the phase value at the position of the difference until the difference was 
less than π as shown in Fig. 14. Thus, the discontinuous difference between phase values 
was eliminated [52]. The pseudocode of the unwrapping process is shown in Fig. 15. The 
gradient dφ(x)/dx of the unwrapped phase line was converted to an instantaneous fre-
quency line in Eq. (3), where fs corresponds to the length of a line. In Eqs. (1) and (3), HT 
denotes the Hilbert transform, and Insfre is the instantaneous frequency. The gradient 
dφ(x)/dx is a line from the phase-contrast X-ray image using instantaneous frequency 
[53].

Conventional images by Fourier analysis

Figure 16 presents a schematics diagram for the simultaneous acquisition of absorp-
tion, scattering, and phase-contrast X-ray images from raw images using Fourier 
analysis. The raw images (grid and sample + grid) obtained by the detector were 
transformed into Fourier domain images expressed as a complex number. The Fourier 
domain images were separated into zero and first peak areas using a bandpass filter. 
The inverse Fourier transform of the zero and first peak areas was the zero and first 
harmonic images, respectively. The absorption image was obtained by dividing the 

(1)One row(x)+HT (One row(x))i = exp[φ(x)],

(2)φ(x) → unwrapp (φ(x)) = φunwrapp(x),

(3)
fs

2π
·
dφunwrapp(x)

dx
= Insfre(x),

Fig. 16  Absorption, scattering, and phase-contrast X-ray images obtained using Fourier analysis. 0 h: zeroth 
harmonic; 1 h: first harmonic; FT: Fourier transform; IFT: inverse Fourier transform; Abs: absorption image; 
Scatt: scattering image; PCXI: phase-contrast X-ray image; G: grid; SG: sample + grid
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ratio of the zero harmonic image of the sample + grid by that of the grid. The scatter-
ing and phase-contrast X-ray images were obtained by dividing the ratio and angle by 
the combination of the zero and first harmonic images of the grid and sample + grid. 
The absorption, scattering, and phase-contrast X-ray images obtained using Fou-
rier analysis were calculated using Eqs. (4)–(7) [54, 55], where Abs, Scatt, and PCXI 
denote the absorption, scattering, and phase-contrast X-ray images, respectively. SG 
and G are the sample + grid and grid, respectively. 0  h and 1  h represent the zero 
and first harmonic images, respectively. Scatt-PCXI is a common formula in scatter-
ing and phase-contrast X-ray images. Additionally, the grid and sample + grid images 
only show the grid and sample with the grid in the detector area, respectively.

(4)IAbs =
ISG−0h

IG−0h
,

(5)IScatt−PCXI =
ISG−1h

IG−1h
·
IG−0h

ISG−0h
,

(6)IScatt = |IScatt−PCXI |,

Fig. 17  Basic concept of an adaptive Gaussian notch filter: a image, b Fast Fourier transform (FFT) amplitude 
distribution, c removal of the frequency components of the periodic noise using segmentation and 
extraction algorithms and FFT amplitude distribution with the frequency components removed, and d final 
filtered image. fx: x-axis spatial frequency; fy: y-axis spatial frequency
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Notch adaptive Gaussian filter

Figure  17 presents a schematic illustration of the operation of the adaptive Gaussian 
notch filter. Figure 17a displays an image of a face with periodic noise, which was con-
verted using a Fast Fourier transform (FFT) into the image in Fig. 17b. Figure 17b shows 
the FFT amplitude distribution. The two unwanted surrounding stain patterns (i.e., fre-
quency components of the periodic noise) in Fig.  17b were removed using segmenta-
tion and extraction algorithms (adaptive thresholding and region growing, respectively). 
The removed amplitude distribution is presented in Fig.  17c. Subsequently, the image 
in Fig.  17c was converted into the image in Fig.  17d using an inverse FFT. Therefore, 
Fig. 17d represents the desired image for an adaptive Gaussian notch filter.

Segmentation and extraction algorithms in the spatial frequency are essential for the 
effective performance of an adaptive Gaussian notch filter. This could be attributed to 
the fact that if a signal is stationary (i.e., if the spatial frequency of the signal is constant 
in space), a notch filter with a fixed frequency range can be used to easily remove the 
periodic noise from that signal, whereas this is not the case if the signal is non-stationary 
(i.e., if the spatial frequency of the signal changes in space). To solve this problem aris-
ing from a notch filter with a fixed frequency range, we characterized the noise from 
the signal, and this noise was adaptively removed by applying a suitable filter for the 
noise characteristics. The identification of these characteristics and their extraction are 
achieved using the segmentation and extraction algorithms. An adaptive notch filter can 
adaptively remove periodic noise from a signal by identifying the notch frequency range 
corresponding to the location of the filter operation [56]. As such, previous studies have 
reported the successful use of adaptive notch filters and these algorithms. Moallem et al. 
[57] used the segmentation and extraction algorithms with an adaptive threshold and 
region growing, while Chakraborty et al. [58] extracted most of the frequency compo-
nents from noise using appropriate thresholding and filtration methods (i.e., using an 
adaptive sinc restoration filter to detect the noise spectrum profile). Alibabaie et al. [59] 
also successfully eliminated noise from an image using a fuzzy transform.

The notch adaptive Gaussian filter [50] proposed in our study can segment and extract 
periodic noise by adaptively analyzing the average spatial frequency from a change in an 
adjacent signal. Consequently, this analysis enables the effective elimination of periodic 
noise by changing the application size of the notch filter.

Bitonic filters: the selection of the multi‑resolution structurally varying bitonic filter

Bitonic filters fundamentally operate based on a sorting process (i.e., descending or 
ascending sorting, where there is only one minimum and one maximum in a given 
region). For example, a median filter ranks the pixel values in a given region, after which 
the middle-ranked (centile: 50%) value in the sorted list (descending or ascending) is 
used as the output. The rank in a median filter can be selected using various orders, and 

(7)IPCXI = tan−1

(

Im(IScatt−PCXI )

Re(IScatt−PCXI )

)

.
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it can be used to eliminate impulsive noise while preserving monotonically increasing or 
decreasing signals [60].

Bitonic filters consist of a morphological filter (for opening and closing operations) 
and a Gaussian linear filter. The morphological filter transforms the input image into 
an intermediate result. The operation of the morphological filter is based on that of a 
rank filter. The closing operation by the morphological filter preserves the signals with 
local maxima and removes the signals with local minima from the image. In contrast, 
the opening operation removes the signals with local maxima and preserves the signals 
with local minima. Consequently, the opening and closing operations of the morpho-
logical filter remove most of the noise from the image. Lastly, the intermediate result is 
converted into a filtered image using the Gaussian linear filter. The Gaussian linear filter 
removes the residual noise after the morphological filtering [60].

Three types of bitonic filter were employed in the present study: a simple bitonic filter, 
a structurally varying bitonic filter, and a multi-resolution structurally varying bitonic 
filter. The simple bitonic filter used the morphological filter and Gaussian linear fil-
ter described above, and the image pixels within the circular mask area were used for 
morphological filtering. The morphological filter and Gaussian linear filter were also 
employed in the structurally varying bitonic filter. However, in contrast to the simple 
bitonic filter, the structurally varying bitonic filter employed various mask shapes for 
morphological filtering, rather than just circular. The shape of the mask was selected 
based on the information in the image pattern in the local area. Particularly, the infor-
mation in the image pattern consists of a matrix of the first and second differential gradi-
ents of the image pixels on the x and y axes in the local area. This matrix determined the 
shape (ellipse) and orientation (slope of the ellipse) of the mask. A structurally varying 
bitonic filter can thus adaptively apply various mask shapes using the matrix. Therefore, 
it represents an adaptive filter based on the surrounding information.

The multi-resolution structurally varying bitonic filter transforms an input image into 
a filtered image (IF: I → Filter). In addition, this filter can reduce (IFR: I → Filter → Reduc-
tion) and enlarge (IFRE: I → Filter → Reduction → Enlargement) the filtered image (IF). 
The state of the image before the reduction is referred to as the upper level and the state 
of the image after reduction is referred to as the lower level. In the present study, the 
reduced image (IFR) was subjected to low-level calculation (IFR → LLC: I → Filter → Reduc-
tion → Low-Level Calculation), after which the reduced image (IFR) was enlarged 
(IFRE: I → Filter → Reduction → Enlargement). The upper level was calculated using 
IF − IFRE + IFR → LLC, and the lower level was calculated using the same method used to 
calculate the upper level. The multi-resolution structurally varying bitonic filter employs 
a multi-level recursion calculation structure. Therefore, this filter can be used to obtain a 
final image via the combined operation of image reduction and enlargement [31].

The structurally varying and multi-resolution structurally varying bitonic filters simul-
taneously achieved the preservation of discontinuities (smooth or edges) in the signal 
and noise removal. In addition, they exhibited robust performance in terms of noise 
removal at various noise levels [61]. In this study, we selected the multi-resolution struc-
turally varying bitonic filter for our proposed method.



Page 20 of 22Yang et al. BioMedical Engineering OnLine           (2022) 21:92 

Training details for the unsupervised deep‑learning‑based denoising algorithms

We tested the denoising performance of the unsupervised learning methods Noise2Self 
[46], Noise2Void [47], Noiser2Noise [48], and NoisyAsClean [49]. These networks were 
implemented using the PyTorch library. To prevent the overfitting of the models due to 
insufficient data, we derived a pre-trained model from a large Mayo benchmark dataset 
of grayscale CT images [62] with similar characteristics to our grayscale data and then 
fine-tuned our data. We trained the comparison models for up to 200 epochs and the 
mean squared error loss function was minimized using the Adam optimizer. The learn-
ing rate was set to 0.0001, and the batch size was set to 32.
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