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Abstract 

Background:  Since both essential tremor (ET) and Parkinson’s disease (PD) are move-
ment disorders and share similar clinical symptoms, it is very difficult to recognize the 
differences in the presentation, course, and treatment of ET and PD, which leads to 
misdiagnosed commonly.

Purpose:  Although neuroimaging biomarker of ET and PD has been investigated 
based on statistical analysis, it is unable to assist the clinical diagnosis of ET and PD 
and ensure the efficiency of these biomarkers. The aim of the study was to identify the 
neuroimaging biomarkers of ET and PD based on structural magnetic resonance imag-
ing (MRI). Moreover, the study also distinguished ET from PD via these biomarkers to 
validate their classification performance.

Methods:  This study has developed and implemented a three-level machine learn-
ing framework to identify and distinguish ET and PD. First of all, at the model-level 
assessment, the searchlight-based machine learning method has been used to identify 
the group differences of patients (ET/PD) with normal controls (NCs). And then, at 
the feature-level assessment, the stability of group differences has been tested based 
on structural brain atlas separately using the permutation test to identify the robust 
neuroimaging biomarkers. Furthermore, the identified biomarkers of ET and PD have 
been applied to classify ET from PD based on machine learning techniques. Finally, the 
identified biomarkers have been compared with the previous findings of the biology-
level assessment.

Results:  According to the biomarkers identified by machine learning, this study has 
found widespread alterations of gray matter (GM) for ET and large overlap between 
ET and PD and achieved superior classification performance (PCA + SVM, accuracy = 
100%).

Conclusions:  This study has demonstrated the significance of a machine learning 
framework to identify and distinguish ET and PD. Future studies using a large data set 
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are needed to confirm the potential clinical application of machine learning tech-
niques to discern between PD and ET.

Keywords:  Grouped stability analysis, Neuroimaging biomarkers, MVPA, Essential 
tremor, Parkinson’s disease

Introduction
Essential tremor (ET) and Parkinson’s disease (PD) are two of the most common move-
ment disorders, with ET being the most common tremor disorder and PD being one 
of the most common neurodegenerative diseases like Alzheimer’s disease. Although 
tremor is the primary symptom for both ET and PD, there are many differences in the 
signs and symptoms of the two disorders. ET often happens bilaterally and is primarily 
seen during action while PD’s tremor commonly occurs at rest and presents unilaterally 
and later progresses to both sides of the body. Furthermore, the primary symptom of ET 
is tremor while the cardinal symptoms of PD not only contain tremor, but also include 
bradykinesia, rigidity and gait/balance problems. Meanwhile, a longstanding clinical 
literature has demonstrated an association between ET and PD, which have shown ET 
might develop PD. But whether ET is a risk factor for PD still remains a controversial 
issue [1, 2]. Nonetheless, these differences are not easily recognized and misdiagnoses 
often occurred due to the same symptoms in clinical diagnosis, especially during their 
initial stages. It is reported that the misdiagnosis rate for ET and PD can be higher than 
25% [3].

In order to differentiate ET and PD, previous studies mainly focused on tremor ampli-
tude and spectral analysis of surface electromyography (EMG) based on pattern classifi-
cation technologies [4–6]. The balance and gait characteristics, collected by body-worn 
inertial motion unit sensors, also have been with machine learning techniques [7]. But 
the classification results of these methods highly depend on the robustness of collected 
signals. Furthermore, whether these diseases have an impact on brain alterations still 
keeps unknown.

Recently, neuro-imaging techniques have provided insights on the brain structural/
functional abnormality of various diseases. Some studies have paid attention to revealing 
the differences between PD patients and normal controls (NCs) [8, 9] or ET patients and 
NCs [10]. Only few studies have looked into the differences and associations of their two 
diseases from the view of structural imaging [10–12]. Benefiting the statistical paramet-
ric mapping and voxel-based morphometry (VBM) technique, the differences between 
PD and ET has been investigated through the comparison of two kinds of VBM process-
ing [10]. Compared with healthy control, ET patients had shown cerebral and cerebellar 
atrophy in scattered areas, while the decrease of the volumes in the lentiform nucleus, 
the insula, the middle frontal gyrus, and the cerebellar vermis had been revealed in PD 
patients. Horizontal VBM comparisons also have indicated that ET and PD caused spe-
cific patterns of brain volume alterations including the thalamus, the middle temporal 
gyrus, the middle frontal gyrus, the cerebellum posterior lobe and the insula. The white 
matter (WM) of PD and ET has been explored, and it has been pointed out that white 
matter microstructure differences in ET are mainly located in cerebellar peduncles and 
thalamo-cortical visual pathways [11]. It has been reported that the brain changes of 
gray matter are mainly related to basal ganglia for PD and NC, right superior temporal 
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gyrus, right angular gyrus, right inferior temporal gyrus, and left middle temporal gyrus 
for ET and NC [12]. It also has been found that significant group differences and asym-
metric morphologic changes in the inferior opercular gyrus of white matter between ET 
and PD. However, these existing research work is limited which primarily have contrib-
uted to analyze the group differences of ET and PD in term of conventional mass-uni-
variate analysis and is failing to reveal disease effects. Until now, there is still a lack of 
stable neuroimaging biomarkers and is not able to identify and distinguish PD and ET at 
the individual level.

To date, machine learning technique, also called multi-voxel pattern analysis (MVPA) 
in the field of neurobiology, has been advocated to identify neuro-imaging markers to 
classify different groups at the level of individual subjects and provide more comple-
mentary information on the pathophysiological framework of the human brain. Instead 
of statistical inference based on single voxel for mass-univariate analyses, multi-voxel 
pattern analysis (MVPA) considers the dependencies of different voxels and consist-
ently excavates the most discriminative information from different data groups, which 
is helpful to reduce the disturbance of noise voxels and increase the classification power 
of machine learning model. In the last few years, a growing number of studies have been 
processed with the use of MVPA to analyze neuroimaging data on various diseases, 
including schizophrenia, autism spectrum disorder and attention-deficit/hyperactivity 
disorder [13, 14]. We have distinguished and identified neuro-imaging markers of PD 
from NC with MVPA [15]. To the best of our knowledge, we have investigated firstly 
PD and ET based on machine learning and achieved satisfactory classification perfor-
mance [16]. To avoid the curse of dimensionality and enhance computational efficiency, 
machine learning models often reduce the dimensionality of high-dimensional neuro-
imaging data as the data preprocessing step [17, 18], and then classify the reduced data, 
i.e., features with the classifiers, such as support vector machines (SVM), which has been 
proved widely to have the excellent generalization capability for new samples [19, 20].

As a new branch of a broader family of machine learning methods, deep learning has 
gained more popularity during the most recent years. Deep learning models can learn 
complex features from hierarchical network structure rather than handcrafted features 
in traditional machine learning. The successful applications of deep learning are numer-
ous in neuroscience to reveal imaging signatures for various diseases and disorders and 
identify individual brains and brain states. It is notable to point out that deep learning 
requires a very large amount of samples available for training due to the risk of overfit-
ting and poor generalization. These investigations have been made to advance the diag-
nosis of various diseases with the help of neuroimaging.

Differentiating from other machine learning studies of computer vision, such as natu-
ral image, remote sensing image, neuroscience has a long-standing interest to localize 
structural and/or functional abnormality induced by diseases. Therefore, neuroimaging-
based machine learning models not only pursue to discriminate patients from normal 
controls with the accurate classification results, but also are capable of identifying the 
contribution of brain regions and comprehend the relationship between the models 
and neural or disease processes. Consequently, a standard protocol of machine learning 
is required to enhance the interpretability of learning models and improve the repro-
ducibility of machine learning model. Therefore, a comprehensive framework has been 
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developed to unify the analysis procedure of machine learning in the field of neuroim-
aging, including model-, feature- and biology-level assessment [21]. The model-level 
assessment evaluates the discriminative ability of a learning model in term of the dif-
ferent groups of neuroimaging data. The feature-level assessment aims to identify the 
importance of features based on a learned model and the derived results are helpful 
to understand the underlying pathophysiological of disease. The biology-level assess-
ment suggests the neuroscientific plausibility of the findings based on machine learn-
ing according to the horizontal comparison with previous studies. Actually, most MVPA 
research work can be regarded as the model-level assessments of this framework. Since 
existing approaches mainly accounts for the discriminant capability of voxels to treat 
these adjacent voxels (clusters) as biomarkers but neglects local correlations based on 
the structural/functional brain atlases. For example, some studies have defined adjacent 
voxels using spherical volumes with a small radius (e.g., 2 mm) or N-connected neigh-
borhoods (26-connected) even if these voxels belong to different structural/functional 
brain regions. As a result, simply emphasizing the discrimination of spatial location may 
harm the interpretation of the results. In tackling this limitation [22, 23], have divided 
voxels into groups in term of prior structural segmented brain atlas to alleviate this 
limitation.

In this paper, we have proposed a MVPA framework and attempted to identify neuro-
imaging markers of ET and PD and distinguished ET from PD based on structural MRI. 
The proposed MVPA framework followed the unified protocol in [21] and intended 
to implement the identification and classification of different group from model-, fea-
ture- and biology-level assessment, respectively. In the model-level assessment, we have 
completed searchlight-based MVPA to identify the brain alterations of different groups 
roughly. And then, we have incorporated prior structural brain atlas to divide these 
brain changes into different groups and processed a group-wise stability analysis based 
on the permutation test to reveal and refine the brain biomarkers from the aspect of the 
feature-level assessment. Finally, we have made a discussion about these results trying 
to comprehend the working mechanism of the model with the support of previous neu-
robiology findings from the level of biology. Our findings have provided further insight 
into structural alteration and automatic diagnosis of ET and PD.

Materials
Subjects

In this study, we have enrolled three number-balanced groups, including an ET group of 
15 subjects, a PD group of 16 subjects and a NC group of 17 subjects. All study proce-
dures and ethical aspects were subject to approval by the institutional reviewer board. 
Written informed consent was obtained from all subjects. All patients and the healthy 
control subjects were examined by neurologists with more than ten years of experience 
in movement disorders. The healthy control subjects had no history of neurologic or 
psychiatric diseases, with normal neurological examinations. The demographics infor-
mation about subjects and average total intracranial volume (TIV) are summarized in 
Table 1.

Images were acquired on a 3T MRI scanner (GE DISCOVERY MR750) at the 
MRI Research Center of University of Electronic Science and Technology of China. 
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High-resolution MRI data were acquired using a 3D T1-weighted spoiled gradient echo 
sequence (T1-3D FSPGR) with the following parameters: TR = 6.008 ms, flip angle = 
9°, FOV = 25.6 cm × 25.6 cm, matrix = 256 × 256, slice thickness = 1 mm, no gap, 152 
slices. During scanning, foam padding and ear plugs were used to reduce head motion 
and scanning noise, respectively. According to visual inspection, T1 images with obvious 
motion artifacts have been removed from dataset.

Magnetic resonance imaging

Preprocessing of MRI images was done using the SPM8 package (Welcome Department 
of Cognitive Neurology, London, UK (http://​www.​fil.​ion.​ucl.​ac.​uk/​spm) and the VBM8 
(voxel-based morphometry) toolbox (http://​dbm.​neuro.​uni-​jena.​de) running under Mat-
lab R2014a (Mathworks) . All T1-weighted images were corrected for bias-field inhomo-
geneities, then spatially normalized and segmented into gray matter (GM), white matter 
(WM) and cerebro-spinal fluid (CSF) within the same generative model. The segmented 
procedure has further applied adaptive maximum a posterior and estimations [24] and 
hidden Markov random field model [25] by accounting for partial volume effects [26]. 
In this study, GM images were included to investigate abnormal brain regions. Subse-
quently, spatial smoothing (Gaussian kernel with 6 mm full-width at half-maximum) 
was performed on GM and WM images to remove noise [27]. The preprocessing proce-
dure is shown in Fig. 1.

Results
Statistical analysis

According to statistical analysis, it is worth noting that there is no gray matter difference 
between PD patients and normal people. However, we can find that gray matter volume 
of ET has changed widely compared with NC as shown in Table 2, Figs. 2 and 3, which 
involved the frontal lobe, parietal lobe, temporal lobe, occipital lobe, insula and limbic 
system. For some brain regions, GM has decreased including bilateral partial lingual 
gyrus, bilateral calcarine cortex, bilateral thalamus, right precentral gyrus, left postcen-
tral gyrus and right dorsolateral superior frontal gyrus; meanwhile, GM has increased in 
most brain areas. Interestingly, in the bilateral lingual gyrus and right dorsolateral supe-
rior frontal gyrus, partial gray matter atrophy and partial gray matter increase. It is not 
difficult to find these abnormal brain regions involve motor Brodmann’s area 4 (BA4), 
BA6, visual (BA17, BA18, BA19, BA37), emotion and cognition (BA32), auditory pro-
cessing and language perception (BA22), memory (BA28, BA35), semantic processing of 
language spatial information (BA39, BA40, BA44).

Table 1  Demographics information and TIV

NC ET PD

Gender (M/F) 9/8 6/8 12/4

Age 53.294± 10.575 56.64± 12.029 69.13± 8.899

TIV 1360.086± 135.087 1297.322± 160.517 1426.902± 180.805

http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de
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Machine learning analysis

The abnormal brain regions of ET

Figures  4 and 5 show abnormal brain regions of ET obtained by model-level and 

Fig. 1  The preprocessing of MRI images

Fig. 2  The group differences (yellow regions) identified by two-sample test (NC > ET)
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feature-level assessment, respectively. It is not difficult to find that the number of abnor-
mal brain regions has decreased after feature-level assessment to avoid the influence 
of structural boundaries of brain regions. Meanwhile, the abnormal brain regions after 
feature-level assessment have covered most of brain regions found by statistical analysis. 
In addition, feature-level assessment also has found the abnormality of bilateral cuneus, 
bilateral superior occipital gyrus and right putamen. It is worth noting that even if both 
machine learning technique and statistical analysis have found the differences in the 
cerebellum, machine learning with feature-level assessment also found more extensive 
differences in the cerebellum. In particular, Table  3 also has listed the clusters whose 
classification accuracy of ET and NC is greater than 90%, indicating that these brain 
regions corresponding to these clusters are significantly discriminative.

The abnormal brain regions of PD

Figures 6 and 7 show PD abnormal brain regions obtained by model-level assessment 
and feature-level assessment, respectively. The abnormal brain regions detected by 
feature-level assessment are different from statistical analysis,involving in cerebellum, 
temporal lobe, frontal lobe, occipital lobe, parietal lobe, and limbic system. Table 4 lists 
detected clusters with classification accuracy greater than 90% for PD and NC. It can be 
seen that CrusI in cerebellum and right caudate nucleus have achieved superior classifi-
cation performance. Furthermore, as shown in Figs. 5 and 7, we can find that the abnor-
mal brain areas of ET and PD partially overlap after the same feature-level assessment, 
but the gray matter of ET is more widespread than PD.

Fig. 3  The group differences (orange regions) identified by two-sample test (NC < ET)
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The distinguishing of ET from PD

In order to verify the robustness and classification performance of abnormal brain 
regions of ET and PD identified in the feature-level assessment stage, the paper has 
applied five machine learning models including RandomForest, Stochastic Gradient 
Descent (SGD), Bagging, Gaussian Naive Bayes (GsNB) and Principal Component 
Analysis followed Support Vector Machine (PCA + SVM) to classify ET from PD 
based on these abnormal brain regions. Moreover, the paper also has compared the 
classification performance on smoothed gray matter with these four models directly. 
The classification procedure has conducted based on fivefold cross-validation with 

Table 2  The abnormal brain regions of ET identified by statistical analysis

Cluster ID Brain regions BA Peak MNI coordinates Cluster 
size 
(voxels)

T

x y z

NC > ET

1 LING.R 18 19.5 − 79.5 − 9 90 5.6986

2 CAL.L,LING.L 18,30,31 − 12 − 70.5 12 1375 7.5639

3 THA.R,THA.L – 6 − 7.5 3 994 7.2812

4 CAL.R,LING.R 18,30,31 10.5 − 69 16.5 1185 7.4777

5 PoCG.L 4 − 54 − 16.5 39 62 4.4564

6 PRreCG.R,SFGdor.R 6,4 37.5 − 7.5 58.5 146 4.4379

NC < ET

1 Cerebelum9.R – 6 − 46.5 − 42 94 4.0545

2 ORBinf.R,ORBmid.R, 
ORBsup.R,AMYG.R, PHG.RINS.RHIP. 
RREC.R,TPOsup.R,OLF.R

13,22,28,47 31.5 6 − 12 3763 8.3214

3 FFG.R,PHG.R 35 34.5 − 28.5 − 30 331 6.7992

4 ITG.L – − 49.5 − 9 − 25.5 72 3.9479

5 Vermis3,LING.L, 
Vermis12,Cerebelum3.L

– 6 − 31.5 − 7.5 1005 13.619

6 ORBinf.L,PUT.L,TPOsup.L, 
AMYG.L,HIP.L,ORBsup.L,STG.L

47 − 30 3 − 13.5 2667 8.4816

7 STG.R,MTG.R 21 54 − 4.5 − 9 690 6.5337

8 SFGmed.L,SFGmed.R, 
ACG.L,ACG.R,REC.R

9,10,32,6,11 1.5 42 31.5 2262 6.0785

9 IOG.L,CAL.L,MTG.L,ITG.L, 
MOG.L,FFG.L,Crus1.L,LING.L

37,18,19,17 − 42 − 18 − 15 1567 8.958

10 IOG.R,ITG.R,MTG.R, LING.R,MOG.R 18,19,37 31.5 − 88.5 − 13.5 742 6.2051

11 STG.L – − 49.5 − 10.5 − 6 56 4.4417

12 MFG.R,SFGdor.R 10 34.5 46.5 6 722 6.1841

13 MOG.L – − 28.5 − 91.5 9 162 7.628

14 SMG.L,ROL.L,ANG.L, 
IPL.L,MTG.L,MOG.L

39,40,13,19,22 − 60 − 57 21 2240 6.4548

15 IFGoperc.R 44 45 12 22.5 503 6.1158

16 ROL.R,SMG.R,STG.R 13.43 46.5 − 15 16.5 1296 7.3077

17 MFG.L – − 27 40.5 16.5 236 4.6633

18 PCG.L,PCG.R 23 0 − 51 15 476 4.8023

19 ANG.R,STG.R 22 63 − 46.5 18 121 4.0803

20 PCUN.L – 0 66 37.5 114 4.568

21 PCUN.L,PCUN.R – 0 − 54 51 129 4.4936

22 SMA.R,PCL.L 6 3 − 18 64.5 905 6.2211
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10 iterations, on the other hand, the paper has employed Optuna to optimize hyper 
parameters of machine learning models.

The classification results are shown in Table 5. We can achieve superior performance 
to distinguish ET from PD based on both smoothed gray matter and abnormal brain 
regions and PCA + SVM has obtained the best classification results. But, the classifica-
tion of abnormal brain regions can not only improve the performance efficiently, but 
also reduce the computational cost. The paper has also provided receiver operating char-
acteristic (ROC) curves of different machine learning methods, as shown in Fig.  8. It 
can be seen that different machine learning models can achieve satisfactory classifica-
tion performance. Due to significant classification performance of these abnormal brain 
regions, they can be considered as neuroimaging biomarkers of ET and PD.

Discussion
The paper has applied statistical analysis and machine learning methods to identify the 
biomarkers of ET and PD. Based on statistical analysis, widespread alterations have been 
found in ET patients and there are no gray matter differences in PD patients. While the 
alterations have been found for both ET and PD patients based on machine learning and 
the abnormal brain regions are overlapped, which is consistent with the findings in [10], 
and is helpful to explain the difficulties to discriminate ET and PD. However, it is nota-
ble that the abnormal brain regions of ET are broader than PD, which is consistent with 
[28]. From the perspective of functional imaging, it has been pointed out that ET can 

Fig. 4  The abnormal brain regions (yellow regions) of ET identified by model-level assessment (accuracy 
>70%, cluster size > 50)
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lead to subtle morphological changes of multiple neural networks, involving the cerebel-
lum, brainstem, frontal lobe and thalamus [28].

Clinically, it is considered that PD and ET are two different diseases. But it is easy to 
misdiagnose PD as ET due to their same clinical symptoms, and some patients with ET 
will be transformed into PD [29]. Autopsy and pathological studies have shown that the 

Fig. 5  The abnormal brain regions (white regions) of ET identified by feature-level assessment (accuracy > 
70%, cluster size > 50, permutation test p < 0.01)

Table 3  The abnormal brain regions of ET identified by feature-level assessment

Cluster ID Brain regions BA Peak MNI coordinates Cluster 
size 
(voxels)

ACC (%)

x y z

1 Cerebelum3.L,Vermis3,LING.R – 0 − 37.5 − 21 427 100

2 IOG.R,CAL.R,MOG.R,LING.R 18,19 30 − 93 − 9 924 98.33

3 MOG.L,MTG.L 37,19 − 52.5 − 67.5 − 1.5 326 100

4 CAL.L,MOG.L,SOG.L 17,18 − 6 − 99 − 7.5 373 100

5 PUT.R – 33 − 13.5 − 6 81 96.67

6 PUT.L – − 31.5 − 10.5 − 6 124 100

10 CAL.L,LING.L 30,31,18 − 10.5 − 69 10.5 1167 100

11 CAL.R,LING.R 31,30,18,23 15 − 69 1.5 1150 100

12 THA.R,THA.L – 9 − 7.5 1.5 556 100

14 MOG.L 19 − 25.5 − 93 7.5 336 100

15 ANG.L,IPL.L,MOG.L 19,7 − 40.5 − 75 42 610 100

16 PoCG.L – − 54 − 16.5 36 125 100
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loss of melatonin dopamine neurons and increased iron deposition in the basal gan-
glia have happened in PD, so PD mostly involved the abnormalities of the basal ganglia. 
However, due to the limited sample size, the brain markers of ET cannot be identified at 
present. However, radiotracer imagings have shown that patients with ET retain dopa-
minergic energy to a large extent, and most studies also have shown that the measure-
ment of iron content in substantia nigra and neuromelanin in patients with ET is not 
significant. Therefore, dopaminergic and iron imaging has shown that there is no sub-
stantial overlap between the pathophysiology of ET and PD.

Due to non-invasive advantages of neuroimaging, researchers have carried out various 
studies on ET and PD based on neuroimaging to clarify the neuroimaging markers of 
the two diseases and explore their pathological mechanism. However, the findings based 
on structural images are inconsistent, and even contradicted [30], it has been pointed 
out that the findings of gray matter abnormalities in ET are unreliable [31]. On the one 
hand, T1 structural image has high image contrast in cortex and basal ganglia, while 
image contrast decreases due to the increase of iron content in the midbrain area for PD 
patients, so it is impossible to accurately detect brain abnormalities; On the other hand, 
it has been believed that ET is not only a simple disease, but a general term of a class of 
diseases with individual heterogeneity. Therefore, heterogeneity in data often leads to 
inconsistent findings.

Although the pathogenesis and neural mechanism of PD and ET are still not clear, a 
large number of studies have found that some brain regions might be related to their 

Fig. 6  The abnormal brain regions (yellow regions) of PD identified by model-level assessment (accuracy > 
70%, cluster size > 50)
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common symptom—tremor, and the most consistent finding is the cerebellum. Com-
pared with the inconsistent results in traditional MRI studies, most findings based on 
diffusion tensor imaging (DTI) have pointed out the microstructure changes of cerebel-
lar. As a consequence, cerebellar abnormalities have been considered as the direct cause 
of tremor. The cerebellar abnormalities in patients with ET and PD were both found 
in [9, 30], but it is still controversial whether the gray matter volume of the cerebellum 
increases or decreases. Although statistical analysis in the paper did not find cerebellar 
abnormalities in PD patients, it was found that the cerebellar gray matter of ET patients 
increased, which is consistent with [32], which has believed that the increase of cere-
bellar for gray matter in ET patients may be the compensatory result of cerebellar dys-
function. In addition, machine learning analysis in the paper found that both ET and PD 
patients had cerebellar abnormalities, and the larger area of cerebellum abnormalities in 
ET patients also partially supported the point that cerebellar abnormalities existed in ET 
and PD.

Fig. 7  The abnormal brain regions (white regions) of PD identified by feature-level assessment (accuracy > 
70%, cluster size > 50, permutation test p < 0.01)

Table 4  The abnormal brain regions of PD identified by feature-level assessment

Cluster ID Brain regions BA Peak MNI coordinates Cluster size 
(voxels)

ACC (%)

x y z

1 CRUS1.L – − 49.5 − 52.5 − 30 100 98

2 CAU.R – 19.5 15 15 388 100
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In order to further explore the role of the cerebellum, it has been found that missing 
Purkinje cells in the cerebellum for most ET patients through autopsy [33]. The possi-
ble reason is that Purkinje cells are inhibitory neurons and participate in the processes 
of motor control and learning. Therefore, the loss of Purkinje cells may lead to exces-
sive activity of the cerebellum, which results in tremor. It has also been suggested 
that the pathological changes of locus coeruleus lead to the changes of Purkinje cells, 
because Lewy bodies are concentrated in locus coeruleus, and locus coeruleus are the 
important source of noradrenaline in the brain and has a main efferent connection 
with Purkinje cells in the cerebellum [33]. On the other hand, it has been pointed 
out that cerebellar abnormalities may be related to cognitive impairment from the 
perspective of neuropsychological symptoms, and this kind of abnormality may be 
caused by the interruption of communication pathway from cerebellum to prefrontal 
cortex through parietal lobe, temporal lobe and limbic system [34]. Especially through 
machine learning method, it was found abnormalities in CrusI for both ET and PD. It 
has been pointed out that most areas of CrusI are related to default mode network 
and control network [9], while the default mode network is responsible for emotion, 
self reference and projection, so patients with PD and ET will appear depression and 

Fig. 8  The ROC curve of different methods on GM

Table 5  The classification performance based on machine learning

Method The classification directly The classification with our framework

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

RandomForest 95.3 95.7 95 96 96.2 96

SGD 94.3 93.5 95.3 95.7 94.3 97.7

Bagging 92.7 93.7 91.3 95.7 98.8 92.3

GsNB 90 93.3 85.7 99.9 100 98.7

PCA+SVM 95.7 95.8 96 100 100 100
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cognitive impairment. It has also been pointed out that the cognitive decline of ET 
patients was faster than that of age-matched healthy subjects [35].

Based on machine learning, the paper also found that an abnormality of lobule VIII for 
ET, but PD did not, which is consistent with [36]. Through correlation analysis between 
the clinical tremor score and the gray matter volume of each region of the cerebellum, 
it has been found that tremor severity of ET is negatively correlated with the volume of 
lobule VIII [36]. Moreover, compared with PD, more extensive cerebellar regions have 
been found for ET, including lobules 3, 4, 5, 7, 8, 9, crusI and vermis 3. Among them, 
lobules 4, 5, 6 and 8 involved sensorimotor regions, which not only showed that tremor 
symptoms of PD and ET were related to the sensorimotor function of cerebellum, but 
also explained that the tremor symptoms of ET were related to a wider range of sensory 
dysfunction.

In the past 10 years, most studies have found abnormalities in different parts of the 
cerebellum in patients with ET [37, 38]. At present, it is necessary to clarify whether ET 
affects the whole cerebellum or only some specific areas of the cerebellum. Because the 
anterior part of the cerebellum is related to movement, its posterior part is related to 
cognition [33] . In particular, neural activation patterns between frontal lobe, cerebellum 
and dentate nucleus are related to executive function and language working memory 
[39]. It has been pointed out that ET may first affect the anterior part of the cerebellum, 
and then affect the posterior part of the cerebellum with the development of the dis-
ease, resulting in the defect of cognitive function [33]. However, it is unclear whether ET 
patients with severe cognitive impairment are accompanied by more severe abnormali-
ties in the posterior cerebellum. However, it has been suggested that cerebellar cortical 
abnormalities may be potential neuroimaging markers of ET [37].

In order to explain the occurrence and duration of tremor, it has been believed that 
the tremor signal of ET patients originated from the cerebellum, transmitted to the relay 
station-thalamus, and finally reached the motor cortex of the forebrain [40]. This path-
way is also known as the cerebello-thalamo-cortical pathway (CTC). Ref. [41] also has 
supported that the abnormality of CTC is involved in the generation and transmission of 
tremor. For PD, it has been suggested that the tremor in PD patients is related not only 
to the pathophysiological changes of the CTC motor circuit, but also to the basal ganglia 
[42]. While they believed that the tremor of PD patients first occurred in the basal gan-
glia and then spread to the CTC circuit through the motor cortex [43]. The paper based 
on statistical analysis found that the atrophy of bilateral thalamus and increased gray 
matter volume of cerebellar in ET. Meanwhile, machine learning in the paper also found 
that the abnormalities of bilateral thalamus in both ET and PD, which may confirm that 
the compensatory effect on the CTC circuit and the occurrence of tremor is related to 
the abnormality of the CTC circuit. Moreover, this paper also found abnormalities of 
basal ganglia of ET and PD (such as putamen and caudate) with machine learning, which 
is consistent with [12, 44]. In addition, the increase of gray matter volume of MTG in 
the paper is partially consistent with [10], which has proposed that the function of MTG 
involved motion perception and eye movement, and some ET patients have long-term 
head tremor, which may need to be supplemented by maintaining visual stability. As a 
consequence, the MTG of ET may be continuously activated, which lead to increasing 
gray matter volume to keep coordination and balance between head and eyes.
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Recently, the tremor behavior of ET patients with gamma aminobutyric acid (GABA) 
hypothesis has been tried to explain [45]. GABA is a molecule produced by the brain. It 
mainly acts as a chemical messenger or neurotransmitter to control some activities of 
the brain. GABA can regulate the excessive excitation of brain nerve cells, so it is also 
called inhibitory neurotransmitter. In the CTC, nerve cells in the cerebellum can pro-
duce and release GABA, which are responsible for regulating and controlling movement. 
For ET patients, the abnormal cerebellar leads to the reduction of GABA molecules, 
which makes the activity of deep cerebellar neurons abnormally excited, and leads to 
the acceleration of the rhythm of the thalamus and its pathway and produces tremor. 
However, the abnormal evidence of the GABAergic neurotransmitter system in patients 
with ET obtained with positron emission tomography (PET) and magnetic resonance 
spectroscopy (MRS) is limited.

In addition, the paper has found increased gray matter related to visual process-
ing function, such as BA17, BA18, BA19, BA21 and BA37. It has long been suspected 
that the increase of visual information will lead to the severity of tremor, this hypoth-
esis has been confirmed [46], and it has been found that increasing visual feedback may 
aggravate tremor. It also has been found that expect for CTC, striatum (V3/V5) and IPL 
are related to the severity of tremor and pointed out that ET is not only manifested as 
tremor, but also as a variety of non motor manifestations, including cognitive impair-
ment, depression, anosmia and possible increased risk of falls, which is consistent with 
the findings of this paper [47]. More than that, the paper also found the abnormalities 
related to cognition, language, hearing, memory, vision, smell and spatial cognition.

Although some results have been identified in our study, it can not be denied that 
there are some limitations in the paper. Firstly, in the stage of model-level and feature-
level assessment, we have achieved superior classification performance. However, since 
maybe there are limited number of samples, 100% accuracies have been obtained. There-
fore, it is necessary to collect sufficient samples of PD and ET patients to verify the 
founds in the paper further. Secondly, we have only investigated the classification results 
on GM, multi-modality and multi-center data will be helpful find more meaningful and 
interesting results from different aspects in the future.

Conclusion
In the paper, we have proposed a machine learning framework to identify the biomark-
ers of ET and PD and classify ET from PD. To the best of our knowledge, this is the 
first study to investigate the differences between ET and PD via machine learning tech-
niques based on structural MRI. Although the viability and effectiveness of the frame-
work in clinical surroundings still need to be confirmed, a few important findings have 
been obtained. First of all, this study has confirmed the widespread alterations of GM 
for ET patients, and the large overlap of biomarkers between ET and PD from the per-
spective of neuroimaging. Furthermore, an excellent classification performance has been 
achieved to discern ET and PD. These findings in the paper have demonstrated that the 
different abnormal patterns of ET and PD on structural MRI could provide helpful infor-
mation to classify ET and PD based on machine learning. Future studies are warranted 
to investigate the potential application of machine learning based on larger dataset in 
clinical diagnosis of ET and PD.
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Methods
Statistical analysis

In this study, we have used two-sample t-test on PD and NC, ET and NC, respectively. 
Meanwhile, we also have regressed age, gender and total intracranial volume (TIV) 
during a two-sample t-test to remove the effects of covariates. Furthermore, we have 
adopted statistical significance p < 0.001 (uncorrected) and the cluster size larger than 
and equal to 50 to detect group differences and compare with the results of machine 
learning.

The proposed MVPA framework

During neuroimaging studies, the searchlight technique has been regarded as the most 
intuitively appealing approaches and often integrated with dimensionality reduction 
technologies when implementing MVPA. The searchlight analysis have been applied to 
discover local and intrinsic information presented in structural/functional MRI [48–50]. 
But searchlight methods also have some limitations to cause serious classification errors 
in practice, for example, it probably misidentifies a cluster as informative and fails to 
detect informative voxels. It has been suggested to conduct confirmatory and sensitivity 
tests to avoid the distorted results [51]. Consequently, we have conducted searchlight-
based machine learning technique and processed permutation test based on prior struc-
tural brain atlas (Automated Anatomical Labeling: AAL) to relieve edge effects which 
lead to that the boundaries of brain regions can be recognized as informative clusters 
easily. The whole framework is illustrated in Fig. 9.

During model-level assessment, for two-class classification problems (PD vs. NC /ET vs. 
NC), we have used the searchlight technique to obtain a data matrix from a sliding spheri-
cal window centered with a specific voxel with the radius of 2 mm, which has been input 
principal component analysis (PCA) to extract meaningful features. At last, Support Vector 

Fig. 9  The proposed machine learning framework
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Machine (SVM) have been applied to classify patients (PD/ET) from NC. In our study, we 
have used PCA to reduce the dimensions of data according to retaining 80% of the variance 
rather then to assigning the fixed number of features [52]. The average classification accu-
racy based on fivefold cross-validation has been considered as the discriminant capability 
of the centered voxel. Finally, several clusters have been obtained based on a 3D accuracy 
map with a specific threshold (larger than 70%) in the paper, which can be considered as 
distinguished brain regions with excellent classification performance roughly.

During feature-level assessment, considering edge effects of brain regions in structural 
MRI, the paper has separated these clusters into different sub-clusters based on AAL tem-
plate and conducted permutation test on each sub-clusters to evaluate its robustness of 
classification performance. For permutation test, let D =

{(
Xi, yi

)}n
i=1

 , where Xi is the 
original data and yi is the corresponding labels, and let D̂ be a set of k randomized version 
of the original data D sampled from a given null distribution. The empirical p-value for the 
classifier f is calculated as follows [53]:

where acc
(
f ,D′

)
 and acc

(
f ,D

)
 represent the accuracies of the class f on data D′ and D, 

respectively. The empirical p-value represents the fraction of randomized samples where 
the classifier behaved on random data better than on original data, which demonstrates 
how likely the accuracy obtained from the original data by chance. Therefore, if the 
p-value is small enough, we can say the null hypothesis is rejected and the discriminant 
capability of original data is powerful. In the paper, p ≤ 0.01 and cluster size ≥ 50 have 
been used to reserve distinguished sub-clusters, which can be considered as neuro-
imaging markers of PD/ET.

During biology-level assessment, we have compared the findings in the paper with previ-
ous findings to explore the biological meaning of identified neuro-imaging of PD/ET in the 
discussion.

Performance evaluation

The performance of the learning model was evaluated by calculating the sensitivity, specific-
ity, and accuracy, which were defined as:

Suppose N represents the number of patients (ET/PD), and M refers to the number of 
NC. N ′ is the number of patients correctly classified, and M′ is the number of NC cor-
rectly classified. TP, TN, FP, and FN are represented as follows:

(1)p =

∣∣∣
{
forD′

∈ D̂ : acc
(
f ,D′

)
≥ acc(f ,D)

}∣∣∣+ 1

k + 1
,

(2)Sensitivity =
TP

TP+ FN
,

(3)Specificity =
TN

TN + FP
,

(4)Accuracy =
TP+ TN

TP+ FP+ FP+ FN
.
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Accuracy, calculated as an arithmetic mean of sensitivity and specificity, was used to 
measure the overall performance of the model in classification. In general, sensitivity 
and specificity affect each other, and an increase in one of them will inevitably lead to a 
decrease in the other.

In addition, the area under ROC curve (AUC) is also used to evaluate the performance 
of classification model. The models with a AUC value closer to 1 have better classification 
performance:
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