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Abstract

Background: Surgical video phase recognition is an essential technique in computer-
assisted surgical systems for monitoring surgical procedures, which can assist surgeons
in standardizing procedures and enhancing postsurgical assessment and indexing.
However, the high similarity between the phases and temporal variations of cataract
videos still poses the greatest challenge for video phase recognition.

Methods: In this paper, we introduce a global-local multi-stage temporal convolu-
tional network (GL-MSTCN) to explore the subtle differences between high similarity
surgical phases and mitigate the temporal variations of surgical videos. The presented
work consists of a triple-stream network (i.e., pupil stream, instrument stream, and
video frame stream) and a multi-stage temporal convolutional network. The triple-
stream network first detects the pupil and surgical instruments regions in the frame
separately and then obtains the fine-grained semantic features of the video frames. The
proposed multi-stage temporal convolutional network improves the surgical phase
recognition performance by capturing longer time series features through dilated
convolutional layers with varying receptive fields.

Results: Our method is thoroughly validated on the CSVideo dataset with 32 cata-
ract surgery videos and the public Cataract101 dataset with 101 cataract surgery
videos, outperforming state-of-the-art approaches with 95.8% and 96.5% accuracy,
respectively.

Conclusions: The experimental results show that the use of global and local feature
information can effectively enhance the model to explore fine-grained features and
mitigate temporal and spatial variations, thus improving the surgical phase recognition
performance of the proposed GL-MSTCN.

Keywords: Surgical phase recognition, Temporal convolutional networks, Cataract
surgery videos, Deep learning
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Introduction

Computer-assisted surgery (CAS) systems play a crucial role in the development of
modern surgery, which can prevent improper decisions resulting from complex surgical
procedures, thereby reducing the risk of postoperative complications, irreversible inju-
ries, and unnecessary pain [1]. A key task required of CAS systems is the recognition of
the surgical phase, as any form of assistance that is not manually triggered and directed
by the surgical team requires an understanding of the surgical environment, the human
interactions that occur in the room, and their evolution near the patient and else-
where [2]. By automatically recognizing and evaluating current surgical scenarios, CAS
systems can provide intraoperative decision support, improve operating room efficiency,
assess surgical skills, and assist with surgical training and education [3]. Using surgical
phase recognition during surgery, one can monitor the progress of the procedure, pro-
vide context-aware decision support, detect potential deviations and anomalies, perform
objective and data-driven analysis of workflow and compare best practices [4]. However,
even for advanced computer-assisted teaching systems [5, 6], the task of identifying the
surgical phase from intraoperative video remains challenging due to the diversity of
patient anatomy and surgeon styles [7] and the limited availability and quality of video
material [8]. In addition, the high degree of similarity between phases and the temporal
variations can lead to degraded performance and limited generalization capability of the
surgical assist system.

Existing studies mainly focus on modeling high-dimensional visual features or the time
sequence information for surgical phase recognition. In terms of visual feature extrac-
tion, early studies used manually designed descriptors to extract features, such as inten-
sity and gradient [9], shape, color, and texture-based features [10]. Meanwhile, in time
sequence feature modeling, several studies have utilized linear statistical models to cap-
ture the temporal structure of surgical videos, including dynamic time warping [11, 12],
conditional random fields [13—15], and variants of hidden Markov models (HMMs) [16,
17]. However, since manually designed descriptors are highly time-consuming and rely
heavily on manual tuning in processing video frames, they fail to satisfy the needs of fast
automated surgical video understanding.

To address these limitations, several deep learning-based methods have been pro-
posed for surgical video understanding, where deep learning methods possess faster sur-
gical phase recognition than manually designed descriptors and do not require manual
tuning of filter parameters. For example, Twinanda et al. [18] proposed EndoNet, which
employs AlexNet as the backbone for surgical phase recognition. Subsequently, Jin
et al. [19] proposed an end-to-end recurrent convolutional network for online cholecys-
tectomy video recognition, realizing that visual representations and sequential dynamics
can be jointly optimized in the learning process. Czempiel et al. [20] introduced a multi-
stage temporal convolutional network, which consists of multiple temporal convolu-
tional layers for extracting temporal features. The temporal convolutional network has
a larger receptive field, which allows the network to obtain longer temporal information.
Shi et al. [21] proposed an attention-based spatiotemporal neural network consisting of
a spatial model and a temporal model for accurate identification by end-to-end training.
In addition, several studies have attempted to improve the surgical phase recognition
performance by forming a multi-task learning or multi-modal learning framework. For
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example, Jin et al. [22] proposed regarding surgical phase classification as a multi-task
pattern, where the extracted video features are used for surgical instrument detection
and surgical phase recognition, respectively. However, performing surgical phase recog-
nition in a multi-task fashion requires additional labels, which increases the workload
of data annotation. Moreover, in surgical practice, numerous video frames with indis-
tinguishable visual characteristics exist, i.e., hard frames, which are assigned different
labels. To this end, Yi et al. [23] proposed treating hard frames as mislabeled samples
and finding these hard frames in the training set by a data cleaning strategy and then
handling the detected hard frames separately by an online hard frame mapper to miti-
gate the negative effects of hard samples. However, the lack of modeling of long time
sequences makes this type of method classify all extremely similar phases all as hard
frames, thus making it difficult to further improve their performance. The above meth-
ods all use LSTM [24] to capture time information, which retains a finite sequence of
memories that cannot span minutes or hours, which is the average duration of surgeries.

With the success of temporal convolutional networks (TCNs) in speech synthesis [25,
26], many researchers have used similar ideas for temporal action segmentation tasks.
Compared to RNNs, TCNs better capture the remote dependencies between video
frames by relying on large perceptual fields. Later, a multi-stage temporal convolutional
network (MS-TCN) [27] was introduced for action segmentation and consists of mul-
tiple stages, where each stage outputs an initial prediction that is refined by the next
stage. Each stage has a set of dilated temporal convolutions to generate an initial predic-
tion, which is refined by the next stage. Li et al. [28] proposed an improved version of
the model based on the MSTCN, called MS-TCN++, which possesses a dual dilated
layer that combines both large and small receptive fields to capture both local and global
features.

The high similarity between the phases of cataract videos lies in the high similarity
to the surgical context. When capturing the cataract surgery video, the microscopic
camera only focuses on a limited field of view around the human eye, which results
in an extremely similar background throughout the video [29]. In addition, this sur-
gical procedure requires delicate operations, causing the differences between each
step to be extremely difficult to distinguish. Cataract surgery can be divided into 9
phases [29]: incision (P1), rhexis (P2), hydrodissection (P3), phacoemulsification (P4),
irrigation and aspiration (P5), viscous agent injection (P6), lens implant setting-up
(P7), viscous agent removal (P8), and tonifying and antibiotics (P9). In these phases,
the same surgical instruments may appear in different surgical phases and the vari-
ations in crystalline lens appearance are not obvious, as illustrated in Fig. 1, which
significantly increases the difficulty of identifying the surgical phases. Another main

-1

Fig. 1 Video frames of different surgical phases with similar appearances. a Represents phase 5: irrigation
and aspiration, and b indicates phase 8: viscous agent removal
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challenge is the temporal variations of phases across cataract surgery videos. Due to
the clinical experience of the surgeons and the condition of the patients, the duration
of each video and even each phase varies greatly [30]. Furthermore, the imbalance of
time span between surgical video phases makes it harder to recognize surgical phases
with a shorter time span.

To address the aforementioned limitations, we introduce a global-local multi-stage
temporal convolutional network (GL-MSTCN) for challenging surgical phase recog-
nition by extracting fine-grained features of video frames and varying lengths of time
span features, respectively. This paper makes three contributions:

+ We propose a triple-stream network (TS-Net), pupil stream, instrument stream,
and video frame stream, to increase the distance between similar surgical phases
by extracting global-local fine-grained features. The pupil stream and surgi-
cal instrument stream can extract fine-grained features in the pupil and surgical
instrument patches acquired by a YOLOv3 [31] detector, thus aiding the video
frame stream in better distinguishing between extremely similar surgical phases.

+ To improve the robustness of the model in identifying surgical phases with various
durations of surgical videos and unbalanced time spans between different phases,
we propose a residual multi-stage temporal convolutional network to exploit the
long-range temporal dependence of different surgical phases. Furthermore, we
adopt a dual dilated layer in the proposed residual multi-stage temporal convo-
lutional network to capture the local features of transition frames of adjacent sur-
gical phases and the global features of each phase to improve the surgical phase
recognition performance.

« The proposed method is validated on a cataract surgery video dataset including
a total of 32 videos with different surgeons and different time durations, and the
quantitative results demonstrate the state-of-the-art performance of the proposed
method.

The remaining of the paper is organized as follows: “Results” section shows the sta-
tistical and quantitative results of our proposed method. In “Discussion” and “Con-
clusion” sections, detailed discussions and conclusions are presented. The proposed
method is described in “Methodology” section, including the experimental settings

and evaluation measures.

Results

In this section, we perform hold-out validations [32] and ablation studies to verify the
feasibility of the proposed method. All experiments were repeated 5 times with ran-
dom initialization to ensure reproducibility of the results.

Evaluation metrics
To better quantify the proposed method, we follow [22] and choose the Accuracy,
Precision, Recall and Jaccard metrics to evaluate the recognition performance, i.e.,
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Table 1 Classification performance of different methods on CSVideo

(2022) 21:82

Methods Accuracy Precision Recall Jaccard
ResNet50 [33] 0.905 0.899 0.900 0811
OHFM [23] 0.923 0.928 0914 0.851
SV-RCNet [22] 0.941 0.937 0.942 0.882
TeCNO [20] 0.930 0.931 0.931 0.866
STANet [21] 0.948 0.941 0.941 0.887
GL-MSTCN 0.958 0.951 0.953 0.907
Table 2 Classification performance of different methods on Cataract101
Methods Accuracy Precision Recall Jaccard
ResNet50 [33] 0.864 0.828 0.823 0.710
Qietal. [34] 0.881 - - -
OHFM [23] 0.920 0.892 0.903 0.816
SV-RCNet [22] 0.934 0913 0.922 0.848
TeCNO [20] 0.936 0917 0915 0.847
STANet [21] 0.953 0.934 0.935 0.879
GL-MSTCN 0.965 0.949 0.952 0.908
C
1 TP
Precision = — Z 7C,
(o part TP, + FP,
C
1 TP
Recall = — Z —c
C pr TP, + EN,
-~ (1)
1< TP
Jaccard = — Z -
C prd TP, + EN, + FP,
C
o IP
Accuracy = 2c=o TP

C 3-8 4(TP. + TN, + FN, + FP,)’

where TP,, TN, FP;and FN, represent the true-positive, true-negative, false-positive,

and false-negative samples of surgical phase ¢ and C is the total number of phases.

Comparison with state-of-the-art methods
To quantify the performance of the proposed GL-MSTCN, we compared it with sev-
eral state-of-the-art methods, including ResNet50 [33], OHFM [23], SV-RCNet [22],
STANet [21], and TeCNO [20], using holdout validation. The quantification results are
shown in Tables 1 and 2. By observing the comparison results in Tables 1 and 2, the
proposed GL-MSTCN achieves state-of-the-art performance on the CSvideo and Cata-
ract101 datasets, respectively.

Among these comparison methods, SV-RCNet integrates ResNet50 [33] and LSTM to
jointly learn spatial and temporal features. Due to the limitation of computing resources,
SV-RCNet can only capture time information within a small video segment. We intro-

duce the multi-stage temporal convolutional networks in our model, which can capture

Page 5 of 18
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the long-range temporal dependence between all frames in an entire cataract surgery
video, as evidenced by the 1.7% and 2.5% improvement in accuracy and Jaccard score of
the proposed model over SV-RCNet, respectively. In STANet, an attention-based spa-
tial-temporal neural network architecture was proposed for better surgical phase rec-
ognition. However, as with SV-RCNet, STANet can only capture the temporal features
of short-time span video segments, resulting in a great limitation of the performance,
as STANet cannot capture sufficient long-time span temporal information. By observ-
ing the quantitative comparison in Table 1, the Accuracy, Precision, Recall, and Jaccard
score of the proposed method are 1.0%, 1.0%, 1.2%, and 2.0% higher than those of STA-
Net. Unlike SV-RCNet and STANet, OHFM uses ResNet50 to extract semantic features
and employs a three-step strategy to mitigate the negative impact of hard samples on
classification. However, the OHFM only roughly treats misidentified frames as hard
frames, resulting in its inability to distinguish between different phases across numer-
ous similar frames. This also leads to the worst performance of the OHFM in classify-
ing cataract surgery phases. To obtain more long-range temporal dependencies, TeCNO
uses an online feature learning method based on a CNN and TCN to explore long-range
temporal relationships in precomputed spatial features. However, TeCNO only obtains
long-range temporal dependencies by simply using a TCN while neglecting to explore
the local fine-grained information between similar frames. Unlike TeCNO, we intro-
duce a dual dilated temporal convolutional layer in the multi-stage temporal network to
obtain global and local temporal information of video frames. By observing the quantita-
tive comparisons in Table 1, the GL-MSTCN outperforms TeCNO by 2.8%, 2.0%, 2.2%,
and 4.1% in terms of Accuracy, Precision, Recall, and Jaccard, respectively.

Table 2 reports the surgical phase recognition results of our GL-MSTC and other deep
learning methods on the public Cataract101 dataset. In Table 2, we additionally added
Qi’s method as a comparison method, which relies on the extracted edge information
and the spatial information in the original image and is the first surgical phase recog-
nition method applied to the Cataract101 dataset. The GL-MSTCN outperforms Qi’s
method in terms of Accuracy by 7%, which demonstrates that the performance of surgi-
cal phase recognition can be improved by aggregating temporal information into spatial
features. Moreover, the GL-MSTCN achieves the best performance among all meth-
ods (95.8% of accuracy, and 90.7% of Jaccard index). It achieved, more than 1% higher
accuracy and Jaccard index, compared with other surgical stage recognition networks in
terms of accuracy and Jaccard.

Overall, our proposed method exhibits better performance in identifying cataract
surgery phases. Embedding temporal convolutional layers in our method enables the
proposed method to model the features of surgical phases of different durations, which
further enhances its ability to discriminate between excessive phases.

Ablation study

To verify the effectiveness of the proposed TS-Net, we conduct ablation studies to quan-
tify the performance of each stream in the proposed TS-Net. First, we verify the effec-
tiveness of the local feature extraction performance of the instrument stream (IS) and
pupil stream (PS) by removing IS (denoted TS-Net w/o IS) and PS (denoted TS-Net w/o
PS) from TS-Net. Next, we verify the effectiveness of S; by embedding it behind TS-Net
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Table 3 Ablation study of key components of the proposed method

Methods Accuracy Precision Recall Jaccard
ResNet50 [33] 0.905 0.899 0.900 0.811
TS-Net w/o IS 0919 0917 0.908 0.844
TS-Net w/o PS 0916 0.904 0.909 0.833
TS-Net 0.928 0910 0910 0.837
TS-Net w/S4 0.941 0.931 0.937 0.882
TS-Net w/(S1,52) 0.958 0.951 0.953 0.907

e ez [r3 []ra [es [ ]re [ p7 [ re M ro

ResNetso NI [UFITT . NUD
TeCNO (I NI N I
OHFM L A e NN [
Sv-Resnet I/ I 70 NN § N N
STANet N e = =
tmsten [N I S e I
Ground Truth [l I N e - .
video 1 (Best Jaccard) -7min 46s video 6 (Worst Jaccard) -6min 31s

Fig. 2 Color-coded ribbon illustration of nine phases (P1-P9) during two complete surgical videos, whose
horizontal axis represents the time progression. In each case, from top to bottom are the results from our four
comparison methods, the GL-MSTCN, and the ground truth

(denoted TS-Net w/S1) and the effectiveness of Sy by plugging it behind TS-Net w/S;
[denoted TS-Net w/(S1,S3)]. The evaluation results are demonstrated in Table 3, where
ResNet50 represents the backbone of the proposed TS-Net. The comparisons in Table 3
show that the performance of the backbone network is improved with the integration of
surgical instruments and pupil streams. Moreover, the surgical phase recognition per-
formance is further improved after S; and Sy are plugged into TS-Net. Therefore, we can
conclude that the proposed triple-stream network can better focus on extracting global
information of video frames and local fine-grained information of surgical instruments
and the pupil, which also helps the GL-MSTCN obtain robust temporal information.

Typical case study

Figure 2 illustrates the classification results of complete surgical videos in the color-
coded ribbon. In test video 1 shown in Fig. 2, the proposed GL-MSTCN obtained the
best Jaccard index, and the proposed method can accurately identify most phase tran-
sitions with a deviation of fewer than 15 s. The proposed GL-MSTCN can reduce the
deviation by 17 seconds, 13 seconds, and 24 seconds compared with TeCNO, OHFM,
and SV-RCNet, respectively. Since the residual multi-stage temporal convolutional net-
work has a larger receptive field and full temporal resolution, it is more effective for long-
time span phase identification, as demonstrated by Fig. 2, and has the longest time span
identification for P6. Moreover, we introduce a dual dilated layer into the residual multi-
stage temporal network, which improves the accuracy of transitions from P6 to P2, P4
to P5, and P7 to P8 and provides smoother and more accurate estimates in transition
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frames. This is important for computer- and robot-assisted surgeries to prepare for the
next stage, such as automatically adjusting configuration parameters in advance. We also
demonstrate the phase classification results for the video (video 6) with the worst Jac-
card score among all tested videos. The visualization of surgical phase recognition for
video 6 in Fig. 2 shows that P5 is usually misclassified as P8. The result is mainly attrib-
uted to the high degree of similarity between P5 and P8, with the same tools being used
and the backgrounds being similar, as shown in Fig. 1. Compared with other methods,
our proposed method achieved the best performance for the classification of P5 and P8
on video 6, which demonstrates that our model has better performance in the discrimi-
nation of similar frames.

Discussion

Automatic surgical phase recognition plays an essential role in modern smart operat-
ing rooms; however, the high similarity between the phases and temporal variations of
cataract videos pose challenges for surgical video phase recognition. In this paper, we
propose a global-local multi-stage temporal convolutional network (GL-MSTCN) for
surgical phase recognition, which improves recognition performance by fusing captured
local fine-grained information with global information over large time spans. Most exist-
ing methods widely use LSTM networks and 3D CNNs to analyze the temporal space of
surgical videos, resulting in the inability to observe the long-range temporal dependency,
while the proposed GL-MSTCN utilizes a multi-stage temporal convolutional network
to capture complex multi-scale temporal patterns. The experimental results demonstrate
that the proposed network can improve the phase recognition performance of cataract
surgery videos.

Due to the limited camera field of view, the relatively fixed location of the crystalline
lens in the camera’s limited field of view and the inconspicuous variation in the appear-
ance of surgical instruments, frames of different phases with similar spatial-visual
characteristics are likely to be incorrectly predicted as the same surgical phase. Previ-
ous work either used conventional CNNs to directly identify cataract surgery stages [30]
or used CNN: to first identify surgical instruments in video frames and then perform
temporal regularization using LSTM [24]. However, these efforts are not ideal for iden-
tifying similar frames because the same surgical instruments appear in different surgi-
cal stages during cataract surgery and changes in the environment occur during surgery.
In contrast, the feature extraction backbone TS-Net in our GL-MSTCN uses the fusion
of local and global features to enable the network to exploit the complementary local
and temporal information to produce more discriminative visual features. Figure 3 illus-
trates the confusion matrices of the proposed method and the comparison methods
in recognizing the surgical phases. Since phase 5 and phase 8 share extremely similar
visual features (as shown in Fig. 1), ResNet50 incorrectly identifies phase 5 as phase 8,
as demonstrated in Fig. 3. The confusion matrix of the GL-MSTCN demonstrates that
TS-Net can strengthen the recognition performance of similar visual frames by extract-
ing local fine-grained features through surgical instruments and pupil streams. However,
although TS-Net improves the fine-grained feature extraction capability, there is room
for considerable improvement for the recognition of certain phases (e.g., phases 5 to 8),
which can also be observed in the OHFM, TeCNO, and SV-RCNet, respectively.
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Fig. 3 Confusion matrices of different methods in surgical phase recognition

Several previous works (e.g., the OHFM and SV-RCNet) used LSTM or other RNNs
networks to capture the temporal features between different phases, but they retained
the memory of a limited sequence that could not span minutes or hours, which is the
average duration of the surgeries. Since the time span between phase 5 and phase 8 is
relatively long (i.e., usually 1-2 min), conventional LSTM fails to memorize temporal
information of such a long time span. With the assistance of a global-local multi-stage
temporal convolutional network (GL-MSTCN), the proposed method can capture ultra-
long-time span temporal information via the exponentially increased dilated temporal
convolutional layer. The proposed GL-MSTCN enhances the discrimination of different
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phases by capturing temporal information, thus improving the recognition performance,
as demonstrated by the confusion matrix of the GL-MSTCN in Fig. 3.

Although the proposed method shows promising applications, there are still a few
limitations that need to be mentioned. (a) The cataract surgery video data included in
this paper were from a single hospital, resulting in less data diversity. In future work,
we intend to include a wider range of data from different surgeons and different hospi-
tals. (b) The performance is not satisfactory for the recognition of similar frames without
any surgical instruments and with less obvious crystalline lens changes (e.g., interstitial
frames in the stage of changing instruments). Due to the current limitations described
above, data cleaning of frames without surgical instruments will be required in subse-
quent studies. Furthermore, to enhance the generalizability of the method, it is necessary
to include a wider range of diverse databases to perform a comprehensive validation.

Conclusion

In this paper, we propose a global-local multi-stage temporal convolutional network
to address the performance limitations due to the high similarity of different phases
in cataract surgery. The proposed TS-Net is designed to extract fine-grained features
of video frames, which allows better exploration of more representative spatial details
between different phases. At the same time, the proposed GL-MSTCN uses temporal
dilated convolutional layers to obtain full temporal resolution by increasing the tem-
poral receptive fields. Specifically, we introduce a dual dilated temporal convolutional
layer to explore the local semantic information between adjacent phases and the global
long-range temporal dependencies of each phase. Extensive experimental results show
that the proposed GL-MSTCN can improve phase recognition in cataract surgery and
achieve state-of-the-art performance. This approach has great potential to be introduced
into AI systems for surgical skills assessment and computer-assisted surgery (CAS) sys-
tems to assist the surgeons in avoiding technical errors and provide real-time informa-
tion for better decision-making. Overall, the strategy of our proposed method allows us
to use existing object detection methods to preextract fine-grained features to assist the
model in better video phase identification. In future work, we would like to focus on
collecting more cataract surgery videos from different medical centers to validate and
strengthen the generalization capability of our proposed method. Furthermore, extend-
ing the proposed method to other types of surgical video analysis tasks is also one of the

future works.

Methodology

In this paper, we propose a network consisting of a triple-stream network (TS-Net) and
a multi-stage dilated temporal convolutional network (MSTCN [35]). The former is used
to extract global-local features from cataract surgery videos, and the latter is used to
capture long-range temporal dependencies of cataract surgery videos. A flowchart of the
proposed GL-MSTCN is illustrated in Fig. 4. First, we use a fine-tuned YOLOvV3 [31]
to extract pupil and surgical instrument patches in video frames. Second, we input the
extracted patches and the video frames into a triple-stream network (TS-Net) (as illus-
trated in Fig. 5) to extract the global and local semantic information of the similar-look-
ing video frames. For each frame, the TS network generates a fine-grained feature vector.
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Fig. 5 Schematic diagram of the proposed TS-Net. The surgical instruments and the pupil in the video frame
are detected and isolated using YOLOv3 [31].1S and PS indicate the instrument stream and pupil stream,
respectively

Then, the fine-grained feature vectors of all frames are combined into a vector sequence
(denoted vg) representing the fine-grained features of the entire video. Next, the vector
sequence is input into the MSTCN [35] to capture longer sequence information through
progressively increased receptive fields. Subsequently, we pass the vector sequence vy
through a fully connected layer and then perform residual learning [33] with the fea-
tures extracted by the MSTCN [35] to obtain the output of the proposed GL-MSTCN.
Finally, the GL-MSTCN extracted features are fed to a classifier for cataract video phase
classification.

Architecture of TS-Net
Since cataract surgery videos have high similarity to the surgical context and the same
surgical instruments may appear in different surgical phases, the precise recognition
of surgical phases is extremely challenging. To address these limitations, we propose a
triple-stream network (i.e., TS-Net) to exploit discriminative fine-grained features. The
detailed architecture of TS-Net is illustrated in Fig. 5.

First, we use a fine-tuned YOLOV3 [31] to obtain the pupil and surgical instrument
patches with fine-grained features in a single video frame. For the training of YOLOV3,
we input the video frames with the bounding box labels of the pupil and surgical instru-

ments to fine-tune the model. Then, we use the obtained pupils and surgical instrument
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patches along with video frames as the inputs to the pupil feature extractor stream,
the instrument feature extractor stream, and the video frame feature extractor stream.
The ResNet50 [33] model serves as the feature extraction backbone in each stream.
Second, the output features from the fully connected layers of these three streams are
concatenated as a fine-grained feature representation of the whole frame. Finally, the
concatenated features are fed into a classifier (i.e., a fully connected layer) to generate
preliminary predictions of cataract surgery phases. With the above steps, our proposed
TS-Net is capable of simultaneously exploiting the global information of video frames
as well as the local fine-grained information contained in pupil and surgical instrument
patches. The proposed TS-Net can improve the recognition of hard frames by learning
the pupils and surgical instrument features that appear in different surgical phases and
by selectively classifying them based on pupils or surgical instruments when the phase
cannot be correctly predicted from a single video frame.

Architecture of the MSTCN

The existing study has demonstrated that stacking multiple predictors can significantly
improve the performance of the model [27]. Inspired by [35], we propose a residual
multi-stage temporal convolutional network (MSTCN) to predict temporal phases.
The MSTCN consists of two stages: the first stage (denoted Si) is composed of N
dual dilated temporal convolutional layers, and the second stage (denoted S) is com-
posed of N single dilated temporal convolutional layers, as shown in Fig. 6. To capture
the entire time information of the video, we set N to 9. Specifically, the input of Sj is
the fine-grained semantic features of each frame extracted by the proposed TS-Net,
X = (x1,%2,...,%¢),t € [1, T], where T is the total number of frames. We then denote
the output feature of S1Y; = [s1(x1,%9,...,%¢),t € [1, T], where I's1 (-) denotes the dual
dilated temporal convolutional layer. Subsequently, we use Y7 as the input to Sy to obtain
the output Yo, which is then concatenated with X and fed into a1l x 1 convolutional layer
for dimensionality reduction. Finally, Y is fed into the classifier for the final surgery
phase prediction.

In addition, we replace non-causal convolution in the MSTCN [35] with causal convo-
lution in the dilated temporal convolution layer. Unlike the non-causal convolutional, in
which prediction J; for time step ¢ depends on # past and # future frames, the prediction
¢ of causal convolution does not depend on any # future frames, but depends only on
the current frame and previous frames, i.e., ¥ (x;—y, - - - , ;). This allows the GL-MSTCN
to be deployed in an online computer-assisted surgery (CAS) system.

In the first stage, the introduced dual dilated temporal convolutional module follows
the design of MS-TCN++ [28], as shown in Fig. 7. The dual dilated temporal convo-
lutional module contains two convolutional layers with different dilation rates. The
dilation rate of the first layer increases exponentially as the number of layers increases
DR, = 2”1 where DR, indicates the dilation rate of the nth layer. The other dilated
temporal convolutional layer show the opposite trend of the first layer. That is, the dila-
tion rate decreases exponentially as the number of layers increases: DR, = 2=, Each
layer applies a dilated convolution with ReLU activation to the output of the previous
layer while using residual connections to facilitate gradient flow. Mathematically, the set
of operations for each layer can be represented as follows:
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Fig. 6 Overview diagram of the proposed GL-MSTCN. The proposed GL-MSTCN contains a global-local
fine-grained features extraction network (TS-Net) and a multi-stage dilated temporal convolutional network
(MSTCN). The MSTCN consists of Syand Sy, where S1and S, are composed of parallel dual dilated convolutional
layers and single dilated convolutional layers, respectively. L1 and L, denote the loss functions of Syand S5,
respectively. FC is a fully connected layer
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Fig. 7 Schematic diagram of nth(n € [1,N]) dual dilated temporal convolutional layer. The dual dilated layers
use two different sets of dilation rates, one increasing with the number of layers and the other the opposite
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Qua; = Wi *Di—1 + by, 2)
Qua, = Way Dy + by, 3)
Q; = ReLU(LayerNorm([Q;4;, Q1,4,1)), (4)
Dy =D;1 + W3, % Qr+ b3y, (5)

where Q; 4, and Q; 4, are the output of the first and the second dilated temporal con-
volutional layer with weights (W;; and W5;) and biases (b1, and b, ), respectively. Q;
indicates the concatenation of Q; 4, and Q; 4, followed by a1l x 1 convolutional layer, nor-
malization (LayerNorm) and ReLU activation. D; is the output of the /th dual dilated
temporal convolutional layer, where W3 is the weight of the 1 x 1 convolutional layer
with bias b3 ; in Eq. 4, % denotes a convolutional operator.

The second stage consists of N dilated temporal convolution layers, where each layer
is followed by layer normalization and ReLU activation. Similarly, the dilation rate of the
intermediate temporal convolution layer increases exponentially, i.e., the dilation rate of
the nth layer is DR, = 2L,

Loss function

The identification of surgical phases has an unbalanced pattern due to the large variation
in the number of video frames in each phase of cataract surgery videos. Therefore, we
employ the weighted cross-entropy loss to train, TS-Net to address the imbalance in the
convergence speed of the loss function of the deep learning model by assigning different
weights to different surgery phases. Mathematically,

N C
1 ~
L71s-Net = _ﬁ E - g - wcYic - 1og Vi, (6)
=0 c=

where y;. and ;. indicate the ground truth and predicted probability of the ith frame
belonging to class ¢, respectively. N denotes the number of all frames, while C denotes
the number of classes, ie., the number of surgical video phases. The class weight of
the cth class «, is obtained by using median frequency balancing [36]. To train the GL-
MSTCN, we also employ the weighted cross-entropy loss as the cost function:

L M
Lusten =+ z:llm
m=

11 M N C
(m) ~(m)
~TMN Z Zzwﬁ’")%,ﬁ” 'logﬁ’if ’

where L,, is the loss of the mth (m € {1, M}) stage, M denotes the number of stages of
the GL-MSTCN, and yl{fc”) and 5/1(2”) indicate the ground truth and predicted probability
of the ith frame belonging to class c in the mth stage, respectively. Similarly, the class
weight of the cth class in the mth stage o™ is also obtained by using median frequency

balancing [36].
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=14 - e Py
Fig. 8 Sample of nine phases in CSVideo dataset. Incision (P1), rhexis (P2), hydrodissection (P3),
phacoemulsification (P4), irrigation and aspiration, viscous agent injection (P6), lens implant setting-up (P7),

viscous agent removal (P8), and tonifying and antibiotics (P9)

Table 4 Experimental configurations

Methods Lr Batch size Optimizer Epoch
TS-Net 0.0005 16 Adam 50
GL-MSTCN 0.0002 1 Adam 200
Dataset

CSVideo. An in-house cataract surgery video (CSVideo) dataset acquired from a local
hospital was used to train, validate and test the surgical phase recognition model. The
CSVideo dataset includes 32 videos of cataract surgeries from different surgeons. Each
video is annotated by an experienced ophthalmic surgeon (with more than 10 years of
clinical experience) into nine surgical phases based on clinical experience and previous
studies [29], as shown in Fig. 8. All the videos were captured by an ophthalmic operating
a microscope at a frame rate of 60 fps and 1920 x 1080 pixels. The average duration of
all videos is 6 min, with a maximum of 10 min and a minimum of 4 min. We randomly
selected 22, 4, and 6 videos from 32 videos as the training set, validation set, and test set,
respectively. To reduce GPU consumption, we downsampled the frame rate of the video
to 20 fps and resized each frame to 720 x 480 pixels.

Cataract101. To verify the reproducibility and generalizability of our method, we
introduced a large public surgical video dataset, the Cataract-101 dataset [37]. The data-
set contains 101 videos of surgeries performed by four different surgeons (two experi-
enced senior surgeons and two less experienced assistant surgeons). It is annotated with
the ground truth of ten quasi-standardized operation phases typically performed for
such operations (without serious complications). Following the splitting strategy in [34],
We randomly selected the 73 and 28 videos from 101 videos as the training set and test
set, respectively. All videos have a frame rate of 25 fps and a resolution of 720 x 540 pix-
els. The average length of all videos is 8 min, with a maximum of 17 min and a minimum
of 4 min. In order to reduce GPU consumption, we downsampled the frame rate of the
video to 1 fps.

Experimental setup

The proposed method was implemented on the PyTorch platform in Ubuntu 16.04
LTS with a single NVIDIA GPU (GeForce GTX Titan XP). The experimental configu-
rations of TS-Net and the GL-MSTCN are shown in Table 4. Due to the limitation of
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GPU computing resources, we set the batch size to 16 when training TS-Net and we
use adaptive moment estimation (Adam) with a decay of 0.0005 as the optimizer. We
use poly learning rate decay strategy with an initial learning rate of 0.0005 and power
of 0.9: Ir = init), x (1 — iters/total-iters) P°“*'. Since we used pre-trained parameters
when fine-tuning TS-Net, the maximum epoch was set to 50. For the training of the
GL-MSTCN, we set the maximum epoch, the initial learning rate, and the batch size
to 200, 0.0002, and 1, respectively. All experiments were repeated 5 times with random
initialization to ensure the reproducibility of the results. During the fine-tuning of the
TS-Net, all frames were randomly cropped to 480 x 480 pixels and subsequently resized
to 224 x 224 pixels. We performed data augmentation using random horizontal and ver-
tical flips with a probability of 0.5 and random rotations with a probability of 0.5 at a
random angle within [—-30°, 30°].

Abbreviations

TCN Temporal convolutional network

MSTCN Multi-stage dilated temporal convolutional network
LSTM Long short-term memory

HMM Hidden Markov models

3DCNN  3-Dimensional convolutional neural network

CNN Convolutional neural network

RNN Recurrent neural network
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