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Light enhanced bone regeneration in an
athymic nude mouse implanted with
mesenchymal stem cells embedded in
PLGA microspheres
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Abstract

Background: Biodegradable microspheres fabricated from poly (Lactic-co-glycolic acid) (PLGA) have attracted
considerable attention in the bone tissue regeneration field. In this study, rabbit mesenchymal stem cells (rMSCs)
adherent to PLGA microspheres were implanted into athymic nude mice and irradiated with 647 nm red light to
promote bone formation. It was found that irradiating rMSCs with high levels of red light (647 nm) from an LED
(light-emitting diode) increased levels of bone specific markers in rMSCs embedded on PLGA microspheres.

Result: These increased expressions were observed by RT-PCR, real time-QPCR, immunohistochemistry (IHC), and
von Kossa and Alizarin red S staining. Microsphere matrices coated with rMSCs were injected into athymic nude

4 weeks in vivo.

and in vivo performances.

mice and irradiated with red light for 60 seconds showed significantly greater bone-specific phenotypes after

Conclusion: The devised PLGA microsphere matrix containing rMSCs and irradiation with red light at 647 nm
process shows promise as a means of coating implantable biomedical devices to improve their biocompatibilities

Keywords: PLGA microspheres, LED, rMSCs, in vivo transplantation, Biomedical devices

Background

Tissue engineering has traditionally used non-reactive
synthetic and natural matrices for specific tissue regener-
ation [1-3]. However, the fabrication of suitable biocom-
patible materials creates new opportunities for tissue
regeneration in vivo and in vitro in culture systems that
mimic the 3D organizations and functional differentia-
tions of tissues. Many researchers in the tissue engineering
field have focused on the roles of stem cells [4-7].
However, although stem cells are capable of differen-
tiating to specific cells and making required tissues,
they are problematic in terms of degree of prolifera-
tion and multi-lineage differentiation [8]. In order to
overcome these shortcomings, many researches have
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attempted to increase stem cell expansion and differ-
entiation [9, 10].

Recently, laser therapy (LT) has been used to stimulate
biologic effects in biological systems and cells. Biomodula-
tion induced by light has been the main subject of several
reports over the past few years [11-14]. In terms of the
application of LT, the wavelength of the light used is
thought to specifically stimulate or inhibit actions in cell
and tissues. In clinical trials and in vivo, some ranges of
wavelength, in particular, red to near IR, were thought be
a useful for wound healing [15], peripheral and central
nerve regeneration [16], and for the treatment of stomach
and duodenal ulcers [17], because such light better pene-
trates tissues. The several types of cells were found to in-
crease after exposure to low doses of laser irradiation,
whereas cell growth and differentiation inhibitory ef-
fects were reported at higher doses due to accelerated
ATP synthesis in cells [18-23] (Scheme 1).
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Scheme 1 Schematic view of rMSCs embedded onto PLGA microspheres stimulated by LED irradiation
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In the present study, we investigated the use of high
doses of laser radiation to increase the differentiation of
mesenchymal stem cells (MSCs) embedded in PLGA mi-
crospheres for bone regeneration in vivo. In the previous
study, we examined the effect of light from a red light-
emitting diode on osteogenic differentiation of mouse
mesenchymal stem cells (D1 cells) which were cultured
in the presence of osteogenic differentiation medium
(ODM) for 3 days, then exposed to a red light-emitting
diode (LED) light of 647 nm wavelength once for 10 s,
30 s and 90 s with radiation energies of 0.093 J, 0.279 |
and 0.836 J, respectively [24]. This study suggested that
osteogenic differentiation of mesenchymal stem cells
(MSCs) cultured in vitro is enhanced by LED light expos-
ure. Laser irradiation of MSCs offers the potential to
promote the productions of bone-specific proteins and
extracellular matrix, and ultimately the generation of new
bone tissue. In this study, we hypothesized that exposing
MSCs embedded in a microsphere matrix to radiation
emitted by a light emitting diode in vivo might accelerate
the differentiation of MSCs into the osteoblast phenotype
and facilitate the synthesis of mechanically functional bone.

Methods

Cell harvesting and culture

Rabbit bone marrow stromal cells (rMSCs) were har-
vested from 3-week-old New Zealand White rabbits, as
previously described [25]. In brief, bone marrow (BM)
was obtained from the rabbit tibias and femurs via either
aspiration or flushing with a 16-gauge needle and a 10-ml
syringe containing 1 ml of heparin (3,000 U/ml). After be-
ing placed in a 50-ml tube containing 5 ml of low-glucose

Dulbecco’s modified Eagle’s medium (DMEM) (GibcoBRL,
Grand Island, NY), the BM was centrifuged for 10 minutes
at 600 ¢ in order to obtain a cell pellet. After the super-
natant was removed, the cells were resuspended in 10 ml
of low-glucose DMEM containing 10 % fetal bovine serum
(FBS) and 1 % antibiotics, and 10° cells/dish were then
plated and cultured in 10-cm dishes at 37 °C in a humidi-
fied atmosphere of 5 % CO, and 95 % air. Non-adherent
cells were removed by changing the culture medium after
five days of culture. After two weeks of primary culturing,
each dish of cells was passaged into three 10-cm culture
dishes at seven-day intervals. rMSCs at passage 3 were
used in this study. For the cell seeding and growth test,
100 mg of microspheres and 5 x 10° cells/ml of rMSCs
were incubated in a Transwell insert in the culture dish,
with gentle shaking. After 2 h of incubation, the un-
attached cells were removed, and the Transwell inset was
incubated for cell growth.

Preparation of PLGA microspheres

PLGA microspheres (molecular weight 33,000) were fab-
ricated as an oil-in-water emulsion followed by solvent
evaporation, as previously described [26]. In brief, PLGA
(4 g) was dissolved in 30 mL of dichloromethane. Using
a glass syringe and needle (needle gauge; 20G), the poly-
mer solution was dropped into 300 mL of aqueous solu-
tion containing 2 w/v% of poly (vinyl alcohol) (PVA)
while mixing, using a magnetic stirrer at 600 rpm. The
suspension was then gently stirred for 2 to 3 h at 35 °C
with a magnetic stirrer at 600 rpm in order to evaporate
the dichloromethane, and the microspheres were col-
lected via 2 min of centrifugation at 1500 rpm. The
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collected microspheres were washed four times in dis-
tilled water, and were then lyophilized. The size of the
microspheres, as measured by SEM, ranged between
20 ~ 80 pm.

Scanning electron microscopy (SEM) analysis

Scanning electron microscopy (SEM, Philips 535 M) was
used to observe the size and morphology of rMSCs. The
morphology was observed after gold coating by using a
sputter-coater (HUMMER V, Technics, CA). Argon gas
pressure was set at 5 psi, and the current was main-
tained at 10 mA for 5 min. For observing the morph-
ology of cells attached on the PLGA microspheres, the
cells were treated with 2.5 % (v/v) glutaraldehyde in PBS
and then fixed in 4 °C overnight. Cells attached on the
PLGA microsphere surfaces were rinsed with warm PBS
for 5 min and immersed for 1 h in 1 % (w/v) osmium
tetroxide dissolved in 0.1 M sodium cacodylate. After
being washed twice in deionized distilled water, the sam-
ples were dehydrated through a graded ethanol series
(25 %, 50 %, 75 %, and 90 %) for 5 min each and were
washed three times with 100 % ethanol for 10 min.
Ethanol was completely dried by air flow in a clean
bench before gold coating.

Nude mouse implantation and LED irradiation

Six-week old Balb/c nude mice were purchased from Clea
(Japan). Animal experiments were approved by the Animal
Care Committee of CHA University. PLGA microspheres
containing rMSCs were transplanted subcutaneously into
the backs of mice, which were either exposed or not ex-
posed to red LED light (n=18/group). Nude mice were
anesthetized using 30 pl of 43 % ketamine-7 % rompun.
Red light from a 647-nm diode LED generated at 5 mA
and 78 mV was used for the irradiation. Anesthetized mice
were irradiated for 60 or 90 seconds in a dark room (the 60
and 90 exposured groups; n = 18/group). After being irradi-
ated mice were kept in a dark room until they had recov-
ered from the anesthetic. At 3 weeks after-treatment, mice
were sacrificed (n=6) by anesthetic overdose, and skin
areas included transplanted sites were carefully removed
for subsequent biological examination. Photographs of the
skin flaps were also taken to record the appearance of
tissues around treated sites. The method used is illus-
trated in Fig. 1.

Reverse transcriptase-PCR (RT-PCR) and real time PCR
analysis

Total RNA extraction was conducted using Trizol
(Invitrogen, Carlsbad, CA, USA), according to the manu-
facturer’s instructions. The experiment procedures used
were performed as previously described [25]. The oligonu-
cleotides used as primers for RT-PCR and real time-
QPCR in this study are described in Tables 1 and 2.
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Western blotting analysis

For Western blotting analysis, the cells were lysed in
radioimmunoprecipitation assay buffer (RIPA buffer)
(Pierce, Rockford, IL, USA) supplemented with a complete
protease inhibitor cocktail (Roche Applied Science,
Indianapolis, IN, USA). Approximately, 30-50 pg of
protein were loaded onto 8-12 % SDS polyacrylamide
gels (SDS-PAGE) and then transferred to Immobilon-P
membranes (Millipore Corp., Bedford, MA, USA). The
membranes were subsequently blocked in 2.5 % skim milk
in Tris-buffered saline (TBS)-Tween 20 (0.01 %) and
incubated with following primary antibodies: anti-collagen
type I (Chemicon, Temecula, CA, USA), anti-BSP (Abcam,
Cambridge, UK) and anti-B-actin (Sigma). The blots were
visualized by chemiluminescence using Amersham ECL
reagents (GE Healthcare, Little Chalfont, UK).

Histology and immunohistochemical analysis

PLGA microspheres containing rMSCs recovered after
3 weeks in vivo were fixed in 4 % paraformaldehyde,
washed in PBS, and incubated for 10 min at room
temperature in 1 % Alizarin Red S (Sigma) solution to
detect mineralized nodules. For von Kossa staining, fixed
and washed cells were incubated in 5 % silver nitrate
(Sigma) solution under a 60 W lamp. After 1 h at room
temperature, cells were washed in distilled water, and
the reaction was stopped by adding 5 % sodium thiosul-
fate (Sigma) solution for 5 min at room temperature.
Finally, cell nuclei were stained by exposure to nuclear
fast red (Vector) stain for 3 min. To detect induced pro-
teins, cells were fixed and non-specific epitopes were
blocked by incubating them in 2 % BSA for 1 h at room
temperature. The cells were then incubated with primary
antibodies.

For ALP (Alkaline phosphase) staining, cells were fixed
in citrate-acetone-formaldehyde fixative solution for 30 sec
at room temperature and then washed with distilled water.
Cells were then incubated for 15 min at room temperature
and counter stained with hematoxylin.

For immunohistochemical assays, MSCs embedded in
PLGA microsphere sections were fixed in 4 % parafor-
maldehyde solution, dehydrated, and embedded in paraf-
fin, as previously described [25].

Statistical analyses

The significances of differences between experimental
groups were determined using two-tailed Student’s ¢-test.
P-values of < 0.05 were considered significant.

Results

Morphology of rMSCs on PLGA microspheres

Three and Seven days after cultivation, rMSCs adhered
onto PLGA microspheres and formed proliferated morph-
ology in vitro (Fig. 1a & b). In 3 days, the rMSCs were
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Fig. 1 Observation of SEM images of rMSCs adhesion & proliferation on the PLGA microspheres. a 3 days & b 5 days cultivation

50 pm

observed as adhered on PLGA microspheres, while the
rMSCs were proliferated and spread on the whole of the
PLGA microspheres.

RT-PCR analysis

RT-PCR was used to examine the expressions of the
osteogenic markers collagen type I, BSP, and Cbfal
mRNAs, which are major bone marker proteins. To
determine the effect of LED light on osteogenic differen-
tiation, we transplanted rMSCs mixed with PLGA mi-
crospheres because the PLGA microspheres support cell
proliferation. Collagen type I was strongly expressed in
differentiated cells and its expression was enhanced
more in the 90 second exposure groups than in the PLGA
control group in 1 week and 3 week transplantation except
2 week transplantation (Fig. 2a). In osteogenic-specific
genes of BSP, the expressions stimulated by 60 second were
strongly expressed in 2 and 3 week transplantation except
1 week transplantation. With Cbfal gene expression,
60 second exposure stimulated the gene expression in
whole transplantation.

In order to determine quantitatively expression levels,
mRNAs were analyzed by real time-QPCR. Figure 2b
showed that the levels of BSP (bone sialoprotein), Cbfal
(Core binding factor alpha 1), and OCN (osteocalcin) in

Table 1 PCR primer and product size

rMSCs in the 60 second exposure groups increased with
time, whereas the PLGA control group showed no spe-
cific gene expression (Fig. 2B a, b, ¢, & d). In particular,
the expression of OCN mRNA in rMSCs in the 60 sec-
ond exposure group was much higher than in the PLGA
control group. However, collagen type I gene expression
was strongly stimulated by 90 seconds in whole trans-
plantation periods (Fig. 2B b).

ALP and DAB (3, 3 -diaminobenzidine) staining analysis
Figure 3a shows ALP and DAB staining findings in the
three study groups. The 60 second exposure groups
showed higher ALP activities than the PLGA control
group after 3 weeks. ALP activity is known to play an
important role in the ossification process. Furthermore,
ALP activity was significantly higher in 60 second expos-
ure group than in the other two groups; in the 60 second
exposure group ALP activity increased with time for two
weeks and then leveled off (data not shown).

The specific proteins, collagen type I and BSP, released
by differentiated rMSCs irradiated were examined by
western blotting (Fig. 3b). Figure 3b shows that collagen
type I release from rMSCs onto PLGA microspheres in
the 60 second exposure group was highly expressed,
whereas BSP (another bone-specific marker) was not.

Gene Sequence (5 — 3) Size (bp) Cycle Annealing temp. Ref.

coLl ©) AGAACATCACCTACCACTGC 250 35 58 °C Genebank AY633663
(AS) ATGTCCAAAGGTGCAATATC

Cbfa-1 ©) AGAGGTACCAGATGGGACTGTGGTT 316 35 61 °C Genebank 583370
(AS) GGTAGCTACTTGGGGAGGATTTGTG

BSP ©) CAATAGTGACTCATCCGAAG 280 35 55°C Genebank 746629
(AS) CTCCTCATCTTATTCATCAC

GAPDH ©) TCACAATCTTCCAGGAGCGA 293 35 58 °C Genebank L23961
(

AS) CACAATGCCGAAGTGGTCGT




Park and Park Biomaterials Research (2016) 20:4

Table 2 Real time-gPCR primer and product size
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Gene Sequence (5 — 3) Size (bp) Cycle Annealing temp. Ref.

B-Actin ©) ACAGAGCCGCCTCTGCC 124 45 58 °C Genebank AB009345
(AS) ACAAGCCTGAGCCGTTGTC

BSP (S) ATACCATCTCACACTAGTTATAATG 116 45 58 °C Genebank NM000493
(AS) AACAGCATAAAAGTGTTCCTATATC

COLI S) GCAAGAGAGAAAAGAGTGAACC 103 45 58 °C Genebank AY633663
(AS) GTGGCTCAAGCAGAACCAG

Cbfa-1 ©) CAGTCACATCAGGATATCC 17 45 58 °C Genebank 138480
(AS) ATGCTGCTGATCTGGAAGA

OCN ©) CTCCAGGCACCCATCTTTAC 121 45 58 °C Genebank NM00095

However, the BSP released from rMSCs stimulated for
60 second was more potent than that of other samples.

To evaluate ALP synthesis more precisely, we attempted
to quantify its expression as a means of following
osteogenic differentiation (Fig. 3c). Our findings suggest,
although some rMSCs in the PLGA control group had
osteoblastic characteristics, that ALP was expressed at
very low levels by cells in the 90 second exposure and
PLGA control groups.

Histologic and immunochemical histologic analysis
In order to confirm the effect of red light on cell prolif-
eration and differentiation, tissue samples from the two

groups were hematoxylin and eosin (H&E), Alizarin Red
S, or von Kossa stained. In terms of cell proliferation,
H&E staining showed dense cell distributions in the 60
and 90 second exposure groups (Fig. 4a, b, & c¢). Three
weeks after transplantation, samples of the 60 and
90 second exposure groups showed increased osteo-
genic cell populations (Fig. 4d, e, & f). However, cells
in the PLGA control group were wholly undifferenti-
ated (Fig. 4a, d, & g).

In this study, we found that LED red light promoted
the mineralization of PLGA microspheres by rMSCs,
as evidence by von Kossa and Alizarin red S staining
of the calcium deposits released by rMSCs. Furthermore,
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Fig. 2 RT-PCR and Quantitative real-time PCR-based analysis of rMSCs embedded in PLGA microspheres stimulated by LED irradiation. (a): RT-PCR
analysis of mMRNA expression of cbfa-1, COL-I, BSP, and GAPDH for 1 week, 2 weeks, and 3 weeks, (b): Quantitative real-time PCR-based analysis of
mRNA expression of cbfa-1, COL-l, BSP, and OCN for 1 week, 2 weeks, and 3 weeks
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Fig. 3 Test for osteogenic differentiation of rMSCs transplanted in nude mouse determined by DAB and ALP staining (a), western blotting analysis of
B-actin, BSP & collagne type | (b), and ALP release from rMSCs stimulated by LED (c) in vivo. The bar represents 100 m

\

Fig. 4 H & E, Alizarin Red S, and von Kossa staining for osteogenic differentiation of rMSCs embedded onto the PLGA microspheres using LED
irradiation. (@), (b), and (c): H & E staining, (d), (e), and (f): Alizarin Red S staining, (g), (h), and (i): von Kossa staining
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Fig. 5 Immunohistochemistry (IHC) staining of collagen type | (a) and BSP (b

B Control 60 sec

. .
..

) released from rMSCs embedded onto the PLGA microspheres.

90 sec

the amount of calcium released by rMSCs in the
60 second exposure group at 3 weeks post-transplantation
(Fig. 4e & h), were substantially greater than in both
the 90 second exposure group and the PLGA control
group (Fig. 4d & g).

Immunohistologic assays of collagen type | and BSP

In the 60 second exposure group high levels of collagen
type I expression were observed rMSC embedded PLGA
microsphere matrices (Fig. 5e & f). However, in PLGA
control group no expression of collagen type I was ob-
served. On the other hand, collagen type I expression
was smaller in the 90 second exposure group than in the
60 second exposure group (Fig. 5i).

As shown in Fig. 5b, a high levels of BSP expression
were also observed when the antibodies to BSP and nu-
clei was stained with DAPI, in fact, almost all cells in the
60 and 90 second exposure groups stained diffusely
positive for BSP (Fig. 5b). However, no BSP was observed
in the PLGA control group.

Discussion

Many studies have been focused on maintaining the dif-
ferentiation potentialities and expand enough cells for
clinical trials. As a suitable source for differentiation,
low level light irradiation (LLLI) using 630 nm LED
could enhance replicative and colony formation potentials
of MSCs derived from human bone marrow [27, 28].
Furthermore, MSCs seeded on three-dimensional (3D)
biomatrices were irradiated with LLLI. The consequent
phenotype modulation and development of MSCs towards
ossified tissue was studied in this combined 3D biomatrix/
LLLI system and in a control group, which was similarly
grown, but was not treated by LLLI [29].

The osteogenesis indicates that stimulation of light
energy to the cells is absorbed by intracellular chromo-
phores [30]. Recent study suggested that low-level laser
irradiation generates a small amount of singlet oxygen
that influences the formation of adenosine triphosphate
(ATP) [31]. Furthermore, laser irradiation may increase
the transmembrane electrochemical proton gradient in
mitochondria to improve the efficiency of the proton-
motive force and generate greater calcium release by an
antiport process [32]. A number of different lasers with
different wavelengths, including helium-neon (wavelength;
632.8 nm), gallium-aluminum-arsenide (wavelength;
805 + 25 nm), and gallium-arsenide (wave length; 904 nm),
have been used at different intensities and treatment
schedules for repairing bone defects. Our findings show
that red light treatment of transplanted rMSCs on PLGA
microspheres stimulated a cascade of osteogenic events.

Conclusions

Summarizing, our findings suggest that red light laser
LED treatment at 647 nm effectively stimulates osteogenic
differentiation in rMSCs embedded in PLGA microspheres.
It was found that irradiation for 60 seconds increased the
mRNA and protein expressions of bone markers, and
increased calcium deposition, and cell proliferation
and differentiation in vivo. These results indicate that
irradiation with red light has direct and indirect effects on
the growth of rMSCs embedded in PLGA microsphere
constructs and directs cell differentiation during in vivo
tissue regeneration.
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