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Background
The prevalence and consequences of problematic opioid use (POU) continue to be seri-
ous societal issues. Of the 71,000 overdose deaths that occurred in the United States in 
2019, over 70% involved opioids [1, 2]. Although the majority of fatal opioid overdoses 
involve illicitly manufactured and/or obtained opioids [2], like fentanyl and heroin, most 
individuals who misuse opioids are initially prescribed opioids for pain management [3–
5]. Therefore, developing effective approaches to identify risk factors associated with the 
initiation of POU in healthcare settings can contribute to safer opioid prescribing prac-
tices and fewer deleterious consequences of prolonged and elevated opioid use.

Major challenges associated with identifying the risk factors of POU stem, in part, 
from the complexity of the concept itself. POU is described by many terms, each exist-
ing on a continuum of severity with opioid misuse considered the least severe and opi-
oid dependence commonly considered the most severe [6]. However, this varies in the 
literature [7]. In addition to these terms, there also exists a Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5) clinical diagnosis for opioid use dis-
order (OUD), which incorporates terms from the POU continuum and provides a sever-
ity scale based on the number of criteria met [8]. Although the OUD diagnosis subsumes 
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the POU continuum, terms like misuse, abuse, addiction, and dependence are still com-
monly used, both in the literature and in patient medical records, and can describe POU 
with or without an accompanying OUD diagnosis [9–11]. Because of the terminologic 
ambiguity and potential overlap among terms, the reported prevalence of POU-related 
traits varies widely [7, 9, 10] and is commonly not reported or underreported [12–15]. 
However, despite difficulties arising from the challenges of describing and quantifying 
POU as a determinant of health, many individuals exposed to opioid analgesics develop 
some level of problematic use.

A second difficulty in identifying risk factors for POU results from the sources of risk 
themselves. Variation in the POU phenotype comes from three sources: genetic varia-
tion, environmental variation, and the interaction between the two [16], the first two of 
which have been shown to be significant factors underlying POU prevalence and sever-
ity [17–27]. However, although humans live complex lives where important interactions 
and events occur regularly, potential and perhaps significant sources of risk are com-
monly overlooked or not recognized [28–30]. Expansion of the genetic and environ-
mental dimensions of risk yields many sources to be considered including omics data, 
electronic medical records, demographics and personal histories, and digital footprints, 
which include, but are not limited to, social media activity (Fig.  1). Thus, capturing 
the greater phenotypic and environmental profile of an individual has the potential to 
greatly improve risk assessments for POU.

Fig. 1  Conceptual image illustrating potential sources of POU risk using puzzle pieces. The right puzzle 
pieces (Medical History Data and Lifetime & Current Psychiatric Disease Comorbidity) represent phenotypes 
that are usually mined from electronic health records (EHR), clinical notes, or structured assessments/
questionnaires. The left puzzle pieces (Digital Footprint and Environmental & Societal Data) represent mostly 
environmental data that can be obtained from EHR, clinical notes, structured assessments/questionnaires, 
social media, and biometrics. The middle puzzle piece (Omics Data) represents large-scale genetic, 
epigenetic, proteomic, and metabolomic data. This piece links the two sides of the image as there are likely 
synergistic and/or causal relationships with the environment and the greater phenotype
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The complexity of POU as a measurable trait presents many challenges from a 
data science perspective due to ambiguous POU-related terms and their complex, 
but poorly explored, root causes [6, 7, 28, 30, 31]. These issues make powerful digi-
tal approaches difficult to implement despite many recent advances in the fields of 
artificial intelligence, bioinformatics, and computational biomedicine. In this review, 
we discuss the importance of considering all available sources of data when assessing 
disease risk, ways in which POU can be explored as a trait of interest in biomedi-
cal research, and novel digital approaches and technologies that can be utilized to 
explore complex and diverse datasets. Our goal is to illustrate how diversifying and 
expanding both data acquisition and methodology can improve POU risk assessment 
and prediction, potentially alleviating adverse impacts of POU on patients, families, 
and society.

Review methods
For compiling the significant predictors of POU in the literature, we used the search 
terms “risk factors of opioid use disorder” and “predictors of opioid use disorder” 
in Google Scholar and identified scientific research articles and clinical studies over 
the past 10 years within the first 100 search results of both search terms. We used 
this information to create Fig. 2 (orange bars). To include the gene/locus information 
presented in Fig.  2 (blue bars), we integrated data from a literature search protocol 
implemented in a previous review [31].

Fig. 2  Bar plot (orange) of the count of psychiatric disorders and substance use disorders that were 
significant indicators of problematic opioid use (POU) phenotypes in our literature search (see Review 
Methods for criteria) and bar plot (blue) of the shared gene/locus count between psychiatric disorders and 
substance use disorders with POU (see reference [28] for methodology). Shared gene/locus associations 
reflect the relative representation of each disorder as significant predictors of POU. Depression, nicotine and 
alcohol use disorders, and anxiety disorders show high shared genetic liabilities with POU and are the most 
significant indicators of POU. However, schizophrenia displays high shared genetic liability with POU despite 
lower POU prediction
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Risk factors of POU
Risk factors of POU are likely vast and include sources of data that may not be obvi-
ous or readily available. However, risk factors can stem from five basic sources (Fig. 1): 
Lifetime and current psychiatric disease comorbidities that include both mental disor-
ders and substance use disorders (including previous opioid use) [32–34], medical his-
tories from EHR data and clinical notes [35, 36], environmental and societal factors that 
include demographics and personal histories [28], digital footprints including social 
media and biometrics [37–39], and omics data which comprise genetic, epigenetic, tran-
scriptomic, and other large-scale biological data [19–27]. In Fig. 1, the right side of the 
puzzle image represents medical/biological phenotypes while the left side represents 
mostly environmental features. In the center, omics data links the two sides of the con-
ceptual image, illustrating that a patient’s genotype likely has synergistic and/or causal 
relationships with the environment and the greater phenotype.

Of the above sources of information, comorbid lifetime and current psychiatric dis-
ease diagnoses are perhaps the most significant indicators of POU and its development. 
For example, tobacco use disorder (TUD) has a comorbidity rate as high as 98% in popu-
lations of patients in medication-assisted treatment programs for POU [40–43]. TUD is 
also a common pre-morbid risk factor of POU, associated with the initiation and per-
sistence of opioid use and OUD development [44]. Similar relationships with POU have 
also been described for cocaine use disorder [45, 46], alcohol use disorder [47], and can-
nabis use [48]. Mood and anxiety disorders are also commonly associated with POU. 
Depression alone has been linked to the risk of opioid relapse [34], opioid misuse [49], a 
diagnosis of OUD [50], and risk of death from OUD-related overdose [51], while anxiety 
disorders have been linked to opioid relapse [34], non-medical use [52], and misuse [53]. 
Figure 2 (orange bars) illustrates how often a psychiatric disease was found to be a sig-
nificant indicator of a POU phenotype within our literature search criteria (see Review 
Methods) [10, 17, 44, 47, 49, 50, 52–81]. Depression, nicotine use/smoking status, alco-
hol use, and anxiety disorders were the most common predictors of POU (Fig. 2; orange 
bars). In addition to these comorbidities as risk factors of POU, the strongest indicators 
of future POU development are past instances of opioid use or POU [10, 17, 44, 47, 49, 
50, 52–81]. Due to the nature of the relationship between psychiatric disease and POU, 
histories of substance use/abuse and mental illness, although sometimes challenging to 
obtain, are important sources of data for POU risk assessment.

Other major contributions to POU risk are an individual’s genetic and epigenetic pro-
files [22, 24, 27, 82, 83]. Several genetic variants have been associated with opioid use 
and dependence via genome-wide association studies (GWAS) and candidate gene stud-
ies. Foremost of these are variants located in the gene encoding the μ-opioid receptor 1 
(OPRM1), which have putative roles in the genetics and pharmacogenetics of POU [22, 
24, 27, 82]. Structural and epigenetic variation has also been associated with POU. As 
examples, copy number variation in the genes KCND2 and MAP3K4 have been associ-
ated with opioid dependence [83] and opioid exposure has been shown to induce marked 
changes in histone acetylation, histone methylation, DNA methylation, and non-coding 
RNA expression, which collectively have the capacity to affect the expression of many 
gene targets [84]. Many of the genetic variants associated with various POU phenotypes 
have also been associated with other psychiatric disorders. Figure 2 (blue bars) illustrates 
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how many genes or loci, per disorder, have also been associated with a POU phenotype 
[31]. Somewhat reflecting the relative representation of each disorder as important pre-
dictors of POU in the literature (Fig. 2; orange bars), genes associated with nicotine use, 
schizophrenia, depression, and alcohol use have the strongest shared genetic liabilities 
with POU (Fig. 2; blue bars) [31]. Although considerable research has been conducted 
to identify genetic factors contributing to POU and those shared with other disorders, 
new variants are being discovered using modern and robust approaches, highlighting 
the importance of gathering high quality genomic data when assessing POU risk [85].

A patient’s medical history, usually accessible via EHR structured data and clinical 
notes, can provide extensive information useful for POU risk assessment. However, the 
structure and format of EHR data and clinical notes are not uniform and can be limited 
and/or difficult to navigate depending on the healthcare institution [86, 87]. Despite this, 
efforts should be taken to collect as much data as possible on each patient when con-
sidering risk of POU as many the non-biological predictors associated with it include 
level of education, marital status, income, geographic location, and insurance status 
[17, 49, 63, 88]. There are also, of course, biological predictors of POU risk that include 
but are not limited to BMI, race, age, sex, medication history, procedure/operation his-
tory, comorbid disorders, and endophenotypes [17, 49–51, 88, 89]. Endophenotypes are 
defined as physiological traits related or contributing to a disease trait [89]. For example, 
an endophenotype for hypertension is blood pressure. Clinical notes can also be a robust 
source of risk indicators for POU as they can capture critical pieces of information not 
available in structured EHR data. During a clinical encounter, a patient may discuss top-
ics with a healthcare professional that may be associated with risk of POU development 
but not be captured in specific EHR data entry fields [36]. If this information is recorded 
electronically, natural language processing (NLP) approaches can identify features from 
typed language that can assist in the development of risk assessment protocols [64, 90]. 
Other potential sources of risk can be derived from pain and mental health assessments 
during hospital stays as ratings of both have been associated with POU [66, 91, 92]. 
An example of a system designed to capture these types of information is the Patient-
Reported Outcomes Measurement Information System® (PROMIS®), which produces 
scores for several metrics including anger, anxiety, depression, pain behavior, and pain 
interference. If available, these types of data should be incorporated in POU risk assess-
ments due to the strength of the associations between mental health and perceived pain 
with POU.

Perhaps the most elusive source of data for POU risk assessment comes from an indi-
vidual’s environment, both physical and digital. As highlighted above, many aspects of 
an individual’s personal life have been shown to be significant indicators of POU [17, 18]. 
Much of this information is not readily available in EHR data but may be accessible via 
clinical notes, structured assessments, or questionnaires or derived from social media 
data. For example, text analyzed from opioid-related groups on Reddit.​com identified 
significant risk factors for OUD, opioid relapse, and recovery seeking behavior [39]. 
However, most striking is that 72% of individuals who had relapsed exhibited strong 
emotional language in 2 of 10 possible emotional categories – “Joy” and “Negative”. This 
implies that relapse is related to extreme emotions and treatments aimed at support-
ing the regulation of emotion could reduce the risk of relapse or increased opioid use 

http://reddit.com
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[39]. Another example comes from utilizing over 9000 opioid-related posts and demo-
graphic information from Twitter [37]. Using NLP and ML classification, a significant 
correlation was found between posts classified as related to opioid misuse and real-time 
overdose deaths rates in Pennsylvania [37]. Although powerful approaches, these exam-
ples are either anonymous or not linked to a person’s medical history and therefore dif-
ficult to use in POU risk assessment in clinical settings. However, text and demographic 
data from Facebook, linked to an individual’s EHR data, was implemented in various ML 
algorithms to predict medical conditions That include diabetes, hypertension, depres-
sion, and digestive issues [38]. Further, the inclusion of data from Facebook significantly 
improved the prediction accuracy of models in 18 of the 21 disease categories explored 
[38]. Notably, among mental health conditions, predictions of anxiety, depression, and 
psychosis showed the most improvement [38]. Data from social media may also pro-
vide additional insight into risk factors, which EHR data cannot, insofar as many aspects 
of patients’ personal histories and daily experiences are not available in the medical 
record. These studies illustrate how encoded social media language and demographic 
data, much like genetic variants, can be used as disease factors in ML approaches. Also, 
the predictive implications for psychiatric traits suggest that social media data could be 
powerful in assessing factors contributing to the risk of many substance use disorders 
including POU [38]. Finally, biometric data from sources like smart watches and phone 
apps can provide insight into a patient’s exercise regime or sleep schedule, among other 
things. Because greater physical activity has been associated with lower opioid use [17] 
and greater opioid use has been associated with interrupted sleep [93], biometric data 
can be useful in POU risk assessment. Linking these types of data to a patient’s medical 
history can significantly improve POU risk assessment.

Quantifying and categorizing POU
Because POU is a broad phenotype, categorizing it or quantifying its levels as a phe-
notype or response variable presents challenges. Terms like use, misuse, dependence, 
addiction, and abuse do not have universally accepted criteria and, therefore; commonly 
do not translate into useful comparisons across experiments [7]. However, in the case 
of OUD, because it is a clinical diagnosis, both its presence or absence or its sever-
ity can be useful phenotypes for risk assessment. Despite this, there are limitations in 
relying on the diagnosis of OUD for risk assessment. The first of these is the underdi-
agnosis of the disorder, which results in a failure to detect risk factors and/or underper-
formance of predictive models [12–15]. The second limitation is that there is variation 
in the interpretation of criteria and/or severity of OUD diagnoses across clinicians or 
healthcare settings [94]. A possible solution to this limitation is the quantification of opi-
oid exposure or usage. Although there are many opioid-based analgesics prescribed in 
clinical settings, the dosage of various opioids can be standardized as morphine equiv-
alent dosage (MED), also called morphine milligram equivalent daily dosage (MEDD) 
or morphine milligram equivalents (MME) [95]. Other conversion metrics that exist 
internationally include the defined daily dose (DDD) [96] and oral morphine equivalent 
(OMEQ) [97]. A potential downside of this approach is that MME does not account for 
biological, genetic, or pharmacokinetic differences among individuals, highlighting the 
importance of collecting data from diverse sources when performing risk assessments 
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and using MME in combination with a clinical diagnosis of OUD or the presence of 
other POU-related terms, as may be available.

MME is also advantageous over an OUD diagnosis or POU-related terms, particularly 
those derived from the EHR, in that it is a continuous variable. Continuous variables are 
statistically more powerful in regression-based approaches in ML pipelines and can be 
converted to discrete variables to take advantage of classification-based approaches. Dis-
crete variables, like OUD presence/absence or severity as measured by criteria met, are 
limited only to classification-based approaches as they cannot be inherently converted 
to continuous variables. MME can be converted into discrete levels based on pre-deter-
mined dosage ranges or by increments of change before and after a medical procedure 
like surgery.

Predicting MME after surgery can be a powerful indicator of surgical success as the 
primary goal of elective surgery is to decrease patient pain, and therefore MME. How-
ever, many patients’ experience greater pain after surgery [98], potentially leading to 
higher levels of MME. Identifying the contributors to this type of outcome can assist 
clinicians in determining whether surgery is in the best interest of the patient, as high 
levels of MME are associated with death by opioid overdose and opioid-related toxicity 
[81]. With increasing awareness of this risk, efforts are being made to reduce the use of 
opioid analgesics by using, for example, non-steroidal anti-inflammatory drugs or other 
non-opioid analgesics when surgery is indicated [99, 100]. In addition to MME, it is also 
important to collect and include pain ratings provided by the patient, both before and 
after surgery [92]. These data can be merged with MME to predict the pain response fol-
lowing surgery, as MME and pain are positively correlated [98].

Advances and limitations of digital approaches for POU risk assessment
Polygenic risk scores

Polygenic risk scores (PRSs) are a useful method of estimating an individual’s genetic 
risk for a specific trait and a promising approach for disease risk assessment. The litera-
ture on PRSs for POU, although limited, is growing. In a recent study of a large, mixed 
ancestry cohort, PRSs were calculated for four substance use traits (alcohol use disor-
der, OUD, smoking initiation, and lifetime cannabis use) [101]. Among African Ameri-
cans, the PRS for alcohol use disorder and among European Americans the PRS for 
alcohol use disorder, OUD, and smoking initiation were associated with their respective 
Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnoses and criterion 
counts – highlighting the predictive power of PRS. Phenome-wide association studies 
(PheWAS) of these PRSs showed the most associations with other substance use phe-
notypes. For example, the PRS for OUD was associated with 7 substance-use phenotype 
categories, the strongest of which was the DSM-5 diagnosis of tobacco dependence. A 
large, meta-GWAS of European Americans identified loci for problematic alcohol use 
with significant genetic correlations between problematic alcohol use and 138 phe-
notypes [102]. The highest genetic correlations were with other alcohol phenotypes, 
tobacco phenotypes, and psychiatric disorders including depression, schizophrenia, and 
bipolar disorder. These results highlight the utility of PRS for identifying substance use 
disorder risk and shared genetic liabilities among various psychiatric comorbidities.
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Despite the potential utility of PRS for identifying and quantifying disease risk, it 
has inherent limitations. Many studies are of samples with a specific ancestral back-
ground, which limits the applicability of the PRS. Despite this, limiting cohorts to a 
specific ancestral background is a common practice as to include multiple ancestral 
groups, except by meta-analysis, overlooks their different genetic architectures and 
allele frequencies [103]. PRSs have been shown to provide only limited utility across 
population groups [104]. Further, PRSs can differ significantly even within popula-
tion groups when the data are stratified by characteristics such as socioeconomic 
status, age, and sex [105].

Due to the difficulty in recruiting and assessing large samples for GWAS, it is 
becoming increasingly common to use EHR data linked to genomic data for PRS 
prediction due to the wide array of phenotypes available, the speed at which studies 
can be performed, and the potentially high levels of reproducibility. However, these 
benefits come with their own challenges. A recent review highlights some of the 
challenges of linking medical records to genomic biobank data and considerations 
on how to limit or remove them [89]. Potential difficulties include properly defin-
ing disease phenotypes universally (e.g., which for POU can be difficult given the 
absence of a universally agreed-upon phenotype), complexities and redundancies in 
the International Classification of Diseases (ICD) code systems, the limited applica-
bility of GWAS summary statistics using datasets that represent only one ancestral 
group, and the small effect sizes associated with common variants [89]. However, 
these limitations and challenges can be mitigated by utilizing the right tools. For 
instance, much of the ambiguity introduced by ICD codes or complex disease phe-
notypes, like POU, can be alleviated by using phenotyping algorithms specifically 
designed to deal with diverse types of data, like EHR data [89, 106–108]. The Pheno-
type KnowledgeBase is a public repository that houses numerous algorithms for this 
distinct purpose and can help to identify difficult phenotypes [109]. Furthermore, 
by utilizing ML-based approaches, EHRs can drastically improve PRS study design, 
reproducibility, and prediction as the use of EHR-mined phenotypes can reduce the 
time required to build a cohort while ensuring that the population in which the PRS 
is being estimated is representative of the healthcare system population, increasing 
overall diversity [89].

Another limitation of PRSs is that they do have the statistical power to detect the 
existence of epistatic (i.e., gene-gene) interactions when assessing polygenic risk. A 
recent approach, the Multilocus Risk Score (MRS), uses model-based multifactor 
dimensionality reduction to detect epistasis between loci. A study that tested the 
efficacy of this approach compared standard PRS methods with the MRS method 
in a diverse collection of simulated datasets [110]. In 335 of 450 datasets, MRS pro-
duced greater area under the receiver operating characteristics (auROC) curve than 
PRS, even when no epistatic interactions were detected. Using a Wilcoxon signed 
rank test, the improvement of MRS over PRS was significant (P  < 10− 5) [110]. 
Thoughtful considerations and improvements, as highlighted in [110], can be used 
to improve the efficacy of PRS so that genetic relationships for POU and other disor-
ders can more robustly be described, detected, and generalized.
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Machine learning and artificial intelligence

Advances in ML are appearing daily and several of these have the potential to be useful 
in OUD research. There has been substantial attention given to neural networks as a 
ML method. In particular, deep learning (DL) has been developed to extend the archi-
tecture of neural networks to include many layers of nodes, thus greatly improving their 
ability to perform tasks such as image recognition [111]. It will be important to explore 
how best to adapt these algorithms to the study of OUD. One promising approach is 
the application of knowledge of biology and biochemical pathways to guide the archi-
tecture of a DL neural network [112]. Adapting this approach to the conduct of research 
on OUD is promising because researchers can build on the existing knowledgebase to 
help reduce the computational complexity of algorithms by reducing the feature spaces 
in informative ways. Another promising area to explore is automated ML (autoML). One 
of the challenges of ML is knowing which methods to select. Each method looks at the 
data in a different way and it is difficult to know a priori which method is best for detect-
ing unknown patterns in a specific data set. The goal of auto ML is to let the computer 
explore the space of possible algorithms and parameter settings to automatically select 
the best method [113]. An example of an autoML package that can be used for big bio-
medical datasets is TPOT which uses genetic programming (GP) to optimize potential 
ML pipelines [114–116]. The goal of the GP applied in TPOT is to assign fitness scores 
to each ML pipeline and through generations of reproduction and mutation, arrive at an 
optimized solution in terms of model accuracy. Approaches like this can take some of 
the guesswork out of ML, as the technology becomes more accessible to individuals with 
less experience or skill in applying the methods. Finally, interpretation is key to translat-
ing ML results into improvements in our understanding of a phenomenon or in leading 
to new biological or clinical studies. Making sense of ML results is, in some cases, more 
challenging than developing the models themselves. This is where the human element 
comes in. ML and artificial intelligence (AI) are tools that need human interpretation 
and experience to turn data into knowledge. Interpretability, transparency, and trust are 
new frontiers in ML research.

In their application to POU, ML algorithms and approaches aimed at extracting phe-
notypes from EHR data are extremely useful because of the number of terms, diagnoses, 
and metrics that can translate to some level of problematic use. Several recent studies 
have incorporated and evaluated a diverse set of ML methods to derive phenotypes 
from EHR data for disorders including atopic dermatitis [117], rheumatoid arthritis 
[118, 119], and type 2 diabetes mellitus [120]. In the case of type 2 diabetes, several ML 
methods were evaluated including k-nearest neighbor, decision tree, random forest, sup-
port vector machine, and naïve Bayes. All of these approaches yielded higher auROC 
(average across methods was 0.98) than the state-of-the-art linear regression algorithm 
(auROC = 0.71) [120]. ML algorithms, in addition to detecting occurrences of a par-
ticular phenotype, can also enrich current phenotypes by expanding them into levels of 
severity or subtypes. As examples, two recent papers used latent class analysis to identify 
sub-phenotypes of acute respiratory distress syndrome [121] and pediatric sepsis [122]. 
Elucidating phenotype stratification is important as different sub-phenotypes often 
require different treatment strategies and responses. POU could particularly benefit 
from EHR mining as the phenotype is diverse and complicated and improvements in its 
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detection will improve both treatment and risk assessment strategies as the knowledge 
base expands.

Although NLP is a branch of AI, its usefulness and robustness in the identification 
and risk assessment of POU warrants a focused discussion. ICD codes, which are used 
by physicians to diagnose and categorize patients, can help to identify both POU and 
OUD. However, standardized systems like ICD codes or EHR fields often underestimate 
the total of number of patients who exhibit one or more of these diagnoses [123]. When 
used in clinical settings, NLP creates a dictionary of terms and phrases from text sources 
(structured or unstructured) using automated algorithms to identify individuals who 
have, or may be at risk of having, a diagnosis of interest. Thus, NLP may identify pat-
terns from clinical notes associated with a certain diagnosis that standardized classifi-
cations (e.g., ICD codes) cannot. Indeed NLP-assisted manual review of EHR data has 
been shown to greatly assist the classification of POU by identifying additional instances 
of POU that ICD code identification alone misses [90, 124]. However, in these examples, 
NLP methods alone did not identify all patients with POU ICD codes. This lack of over-
lap highlights the importance of using both detection methods in tandem to enhance 
POU identification. NLP also has the potential to identify risk factors of POU. For exam-
ple, NLP methods accurately predicted opioid agreement violations in chronic non-can-
cer pain patients (sensitivity of 96.1%, specificity of 92.8%, and positive predictive value 
of 92.6%) [125]. Because of the high probability of developing OUD when prescribed 
opioids, clinicians and patients can enter into an opioid or pain management agreement 
in which the patient agrees to undergo random drug screenings and/or pill counts. Iden-
tifying patients that have violated or are at risk of violating these agreements is impor-
tant to responsible opioid dispensing. Finally, improvements in text-based classifiers can 
have significant positive effects on NLP performance. A recent study highlights one such 
improvement. The researchers performed manual reviews of hospital discharge sum-
maries and identified several text classes describing potential POU [36]. Annotated sen-
tences were used to generate features using the open-source knowledge bases Empath 
[126], the Unified Medical Language System [127], and PyConText [128]. Several ML 
classifiers were used to predict sentence classification. Of these classifiers, AutoGluon 
had the best performance among classes in testing sets (average P = 81.4, R = 77.8, and 
F1 = 78.2 compared to average P = 81.2, R = 65.8, and F1 = 70 in logistic regression). 
AutoGluon is an autoML package that incorporates DL for text, image, and tabular data 
classification from structured data and focuses on multi-layer model stacking instead of 
model and hyperparameter selection [129]. The stacking allows basal models predictions 
to improve future models using both prediction information and feature space from the 
previous layer. This yields greater accuracy and faster computational times than several 
other autoML frameworks [129]. AutoML packages like TPOT and AutoGluon repre-
sent significant advances in model selection and optimization and have the potential to 
improve significantly the classification and prediction of complex phenotypes like POU.

Conclusions and synthesis
In this review we have highlighted the difficulties in classifying and identifying POU as 
a biomedical phenotype, the complex and potential risk factors associated with POU to 
inform feature identification and engineering, recommendations on how to quantify and 
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classify the phenotype itself, and several methods, approaches, and advancements in the 
fields of ML, AI, and bioinformatics to identify POU and its risk factors. Throughout 
the review, we have sought to emphasize the importance of incorporating diverse and 
varied types of data and multiple methods and approaches to assess and predict POU 
risk. Figure 3 conceptually reinforces this idea. Each pipeline alone has its own potential 
to yield important features and risk predictions. However, combining various sources of 
data and methodological pipelines increases the potential knowledge base, which yields 
more robust models and better identification and prediction. The workflow from data to 
knowledge to prediction can be greatly improved by accessing all available data sources 
and incorporating novel digital approaches. It is our recommendation that future work 
in the fields of POU prediction and POU risk assessment incorporates diverse types of 
data (e.g., environmental data, digital footprints, comorbidities, and omics data) as well 
as multiple methodologies to create robust models and pipelines. Although the collec-
tion of varied data can be particularly challenging, we implore researchers to develop 
novel ways to capture the complex lives of their cohort(s). It is our hope that improving 
the knowledge base of POU will lead to the development of more efficient and accurate 
opioid risk prediction/assessment techniques, which is essential to limiting the exposure 
of individuals at risk and managing this public health crisis.
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